prEN ISO 15494
prEN ISO 15494
prEN ISO 15494: Plastics piping systems for industrial applications - Polybutene (PB), polyethylene (PE), polyethylene of raised temperature resistance (PE-RT), crosslinked polyethylene (PE-X), polypropylene (PP) - Metric series for specifications for components and the system (ISO/DIS 15494:2025)

ISO/TC 138/SC3 N1244

ISO/DIS 15494:2025(en)

ISO/TC 138/SC 03

Secretariat: UNI

Date: 2025-04-01

Plastics piping systems for industrial applications — Polybutene (PB), polyethylene (PE), polyethylene of raised temperature resistance (PE-RT), crosslinked polyethylene (PE-X), polypropylene (PP) — Metric series for specifications for components and the system

Systèmes de canalisations en matiéres plastique pour les applications industrielles — Polybutène (PB), Polyéthylène (PE), polyéthylène de meilleure résistance à la température (PE-RT), polyéthylène réticulé (PE-X), polypropylène (PP) — Séries métriques pour les spécifications pour les composants et le système

© ISO 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 • Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org

Published in Switzerland

Contents

Foreword ix

Introduction x

1 Scope 1

2 Normative references 2

3 Terms and definitions 4

3.1 Geometrical definitions 5

3.2 Material definitions 6

3.3 Definitions related to material characteristics 7

3.4 Definitions related to service conditions 8

4 Symbols and abbreviated terms 8

4.1 Symbols 8

4.2 Abbreviated terms 9

5 Material 10

5.1 General 10

5.2 Hydrostatic strength properties 10

5.3 Material characteristics 10

5.3.3 Resistance to rapid crack propagation, RCP 11

5.4 Materials for components not made from PB, PE, PE-RT, PE-X, or PP 11

5.4.1 General 11

5.4.2 Metallic materials 11

5.4.3 Sealing materials 11

5.4.4 Other materials 12

6 General characteristics 12

6.1 Appearance 12

6.2 Colour 12

6.3 Influence of UV radiation 12

6.4 Resistance to rapid crack propagation, RCP 12

7 Geometrical characteristics 13

7.1 General 13

7.2 Mean outside diameters, out-of-roundness (ovality), and tolerances 13

7.3 Wall thicknesses and related tolerances 13

7.4 Angles 13

7.5 Laying lengths 13

7.6 Threads 13

7.7 Mechanical fittings 13

7.8 Joint dimensions of valves 14

8 Mechanical characteristics 14

8.1 Resistance to internal pressure of components 14

8.2 Calculation of the test pressure for components 14

8.2.1 Pipes 14

8.2.2 Fittings 14

8.2.3 Valves 14

9 Physical characteristics 14

10 Chemical characteristics 14

10.1 Effects on the component material(s) 14

10.2 Effects on the fluids 15

11 Electrical characteristics 15

12 Performance requirements 15

12.1 General 15

12.2 Fusion compatibility 16

13 Classification of components 16

14 Design and installation 16

15 Declaration of conformity 16

16 Marking 16

16.1 General 16

16.2 Minimum required marking of pipes 16

16.3 Minimum required marking of fittings 17

16.4 Minimum required marking of valves 18

Annex A (normative) Specific characteristics and requirements for industrial piping systems made from polybutene (PB) 19

A.1 Material 19

A.1.1 Material classification 19

A.1.2 Material verification of conformity to reference curves 19

A.1.3 Material characteristics 22

A.1.4 Crystallization 22

A.2 General characteristics: Colour 22

A.3 Geometrical characteristics 22

A.3.1 Dimensions of pipes 22

A.3.1.1 Diameters and related tolerances 22

A.3.1.2 Out-of-roundness 23

A.3.1.3 Wall thicknesses and related tolerances 24

A.3.2 Dimensions of fittings 24

A.3.2.1 General 24

A.3.2.2 Socket fusion fittings 25

A.3.2.2.1 Types of socket fusion fittings 25

A.3.2.2.2 Diameters and lengths of sockets 25

A.3.2.2.3 Other dimensions 27

A.3.2.3 Electrofusion fittings 27

A.3.2.3.1 Dimensions of sockets of electrofusion fittings 27

A.3.2.3.2 Other dimensions 28

A.3.2.4 Flange adaptors and loose backing flanges 28

A.3.2.4.1 Dimensions of flange adaptors for socket fusion 28

A.3.2.4.2 Dimensions of loose backing flanges for use with flange adaptors for socket fusion 30

A.4 Mechanical characteristics 31

A.4.1 Mechanical characteristics of pipes and fittings 31

A.4.2 Mechanical characteristics of valves 32

A.5 Physical characteristics 32

A.5.1 Physical characteristics of pipes 32

A.5.2 Physical characteristics of fittings 33

A.5.3 Physical characteristics of valves 33

A.6 Fitness for purpose of the system 33

Annex B (normative) Specific characteristics and requirements for industrial piping systems made from polyethylene (PE) 34

B.1 Material 34

B.1.1 General 34

B.1.2 Material classification and designation 34

B.1.3 Material verification of conformity to reference curves 34

B.1.4 Material characteristics 38

B.1.5 Type of pipe 41

B.2 General characteristics: Colour 41

B.3 Geometrical characteristics 41

B.3.1 Dimensions of pipes 41

B.3.1.1 Diameters and related tolerances 41

B.3.1.2 Out-of-roundness 41

B.3.1.3 Wall thicknesses and related tolerances 43

B.3.2 Dimensions of fittings 44

B.3.2.1 General 44

B.3.2.2 Butt fusion fittings 45

B.3.2.2.1 Outside diameters 45

B.3.2.2.2 Out-of-roundness 45

B.3.2.2.3 Wall thickness of the spigot end 45

B.3.2.2.4 Wall thickness of fitting body 47

B.3.2.2.5 Other dimensions 47

B.3.2.3 Socket fusion fittings 47

B.3.2.3.1 Types of socket fusion fittings 47

B.3.2.3.2 Diameters and lengths of sockets 47

B.3.2.3.3 Other dimensions 49

B.3.2.4 Electrofusion fittings 49

B.3.2.4.1 Dimensions of sockets of electrofusion fittings 49

B.3.2.4.2 Dimensions of electrofusion saddle fittings 51

B.3.2.4.3 Other dimensions 52

B.3.2.5 Flange adaptors and loose backing flanges 52

B.3.2.5.1 Dimensions of flange adaptors for butt fusion 52

B.3.2.5.2  Dimensions of flange adaptors for socket fusion 59

B.3.2.5.3 Dimensions of loose backing flanges for use with flange adaptors for socket fusion 60

B.3.2.6 Prefabricated fittings 61

Where the description and dimensions of fittings of this type is required, ISO 4427-3:2019 Annex B applies. 61

B.4 Mechanical characteristics 61

B.4.1 Mechanical characteristics of pipes and fittings 61

B.4.1.1 General 61

B.4.1.2 Retest in case of failure at 80 °C 62

B.4.2 Mechanical characteristics of valves 62

B.5 Physical characteristics 62

B.5.1 Physical characteristics of pipes 63

B.5.2 Physical characteristics of fittings 65

B.5.3 Physical characteristics of valves 65

B.6 Fitness for purpose of the system 66

Annex C (normative) Specific characteristics and requirements for industrial piping systems made from polyethylene of raised temperature resistance (PE-RT) 67

C.1 Material 67

C.1.1 General 67

C.1.2 Material classification 67

C.1.3 Material verification of conformity to reference curves 67

C.1.4 Material characteristics 70

C.1.5 Coextruded pipe 71

C.2 General characteristics: colour 71

C.3 Geometrical characteristics 71

C.4 Mechanical characteristics 71

C.4.1 Mechanical characteristics of pipes and fittings 71

C.4.2 Mechanical characteristics of valves 72

C.5 Physical characteristics 72

C.5.1 Physical characteristics of pipes 72

C.5.2 Physical characteristics of fittings 74

C.5.3 Physical characteristics of valves 74

C.6 Fitness for purpose of the system 74

Annex D (normative) Specific characteristics and requirements for industrial piping systems made from crosslinked polyethylene (PE-X) 75

D.1 Material 75

D.1.1 Material classification 75

D.1.2 Material verification of conformity to reference curves 75

D.1.3 Material characteristics 77

D.2 General characteristics: Colour 78

D.3 Geometrical characteristics 78

D.3.1 Dimensions of pipes 78

D.3.1.1 Diameters and related tolerances 78

D.3.1.2 Out-of-roundness 78

D.3.1.3 Wall thicknesses and related tolerances 79

D.3.2 Dimensions of fittings 80

D.3.2.1 General 80

D.3.2.2 Electrofusion fittings 80

D.3.2.2.1 Dimensions of sockets of electrofusion fittings 80

D.3.2.2.2 Other dimensions 82

D.3.2.3 Flange adaptors and loose backing flanges 82

D.4 Mechanical characteristics 82

D.4.1 Mechanical characteristics of pipes and fittings 82

D.4.2 Mechanical characteristics of valves 83

D.5 Physical characteristics 83

D.5.1 Physical characteristics of pipes 83

D.5.2 Physical characteristics of fittings 83

D.5.3 Physical characteristics of valves 84

D.6 Fitness for purpose of the system 84

Annex E (normative) Specific characteristics and requirements for industrial piping systems made from polypropylene (PP) 85

E.1 Material 85

E.1.1 General 85

E.1.2 Material classification 85

E.1.3 Material verification of conformity to reference curves 85

E.1.4 Material characteristics 91

E.2 General characteristics: Colour 92

E.3 Geometrical characteristics 92

E.3.1 Dimensions of pipes 92

E.3.1.1 Diameters and related tolerances 92

E.3.1.2 Out-of-roundness 92

E.3.1.3 Wall thicknesses and related tolerances 93

E.3.2 Dimensions of fittings 95

E.3.2.1 General 95

E.3.2.2 Butt fusion fittings 95

E.3.2.2.1 Outside diameters 95

E.3.2.2.2 Out-of-roundness 95

E.3.2.2.3 Wall thickness of the spigot end 95

E.3.2.2.4 Wall thickness of fitting body 97

E.3.2.2.5 Other dimensions 97

E.3.2.3 Socket fusion fittings 97

E.3.2.3.1 Types of socket fusion fittings 97

E.3.2.3.2 Diameters and lengths of sockets 97

E.3.2.3.3 Other dimensions 100

E.3.2.4 Electrofusion fittings 100

E.3.2.4.1 Dimensions of sockets of electrofusion fittings 100

E.3.2.4.2 Dimensions of electrofusion saddle fittings 101

E.3.2.4.3 Other dimensions 102

E.3.2.5 Flange adaptors and loose backing flanges 102

E.3.2.5.1 Dimensions of flange adaptors for butt fusion 102

E.3.2.5.2 Dimensions of loose backing flanges for use with flange adaptors for butt fusion 104

E.3.2.5.3 Dimensions of flange adaptors for socket fusion 108

E.3.2.5.4 Dimensions of loose backing flanges for use with flange adaptors for socket fusion 110

E.4 Mechanical characteristics 111

E.4.1 Mechanical characteristics of pipes and fittings 111

E.4.1.1 Resistance to internal pressure of pipes and fittings 111

E.4.1.2 Impact resistance of pipes 112

E.4.2 Mechanical characteristics of valves 117

E.5 Physical characteristics 117

E.5.1 Physical characteristics of pipes 117

E.5.2 Physical characteristics of fittings 117

E.5.3 Physical characteristics of valves 118

E.6 Fitness for purpose of the system 118

Annex F (informative) Design and installation 119

F.1 Design of a thermoplastics piping system for industrial applications 119

F.2 Installation of piping systems 119

Bibliography 120

Annex ZA (informative) Relationship between this European Standard and the essential requirements of Directive 2014/68/EU for pressure equipment aimed to be covered 122

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Subcommittee SC 03, Plastics pipes and fittings for industrial applications.

This third edition cancels and replaces the second edition (ISO 15494:#), which has been technically revised.

The main changes are as follows:

— in the text PE 63 has been deleted with the reference graphs and PE–100 RC has been added,

— in Annex E the impact resistance of pipes and test parameters for round the clock method has been added

Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This International Standard specifies the characteristics and requirements for a piping system and its components made from polybutene (PB), polyethylene (PE), polyethylene of raised temperature resistance (PE-RT), crosslinked polyethylene (PE-X), or polypropylene (PP), as applicable, intended to be used for industrial applications above ground or below ground by authorities, design engineers, certification bodies, inspection bodies, testing laboratories, manufacturers, and users.

At the date of publication of this International Standard, standards for piping systems of other plastics used for industrial applications are the following:

ISO 10931, Plastics piping systems for industrial applications — Poly(vinylidene fluoride) (PVDF) — Specifications for components and the system

ISO 15493, Plastics piping systems for industrial applications — Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly(vinyl chloride) (PVC-C) — Specifications for components and the system — Metric series

Plastics piping systems for industrial applications — Polybutene (PB), polyethylene (PE), polyethylene of raised temperature resistance (PE-RT), crosslinked polyethylene (PE-X), polypropylene (PP) — Metric series for specifications for components and the system

1.0 Scope

This International Standard specifies the characteristics and requirements for components such as pipes, fittings, and valves made from one of the following materials intended to be used for thermoplastics piping systems under pressure or vacuum conditions in the field of industrial applications above and below ground:

— polybutene (PB);

— polyethylene (PE);

— polyethylene of raised temperature resistance (PE-RT);

— crosslinked polyethylene (PE-X);

— polypropylene (PP).

NOTE 1 Requirements for industrial valves are given in this International Standard and/or in other standards. Valves are to be used with components conforming to this International Standard provided that they conform additionally to the relevant requirements of this International Standard.

This International Standard is applicable to either PB, PE, PE-RT, PE-X, or PP pipes, fittings, valves, and their joints and to joints with components of other plastics and non-plastic materials, depending on their suitability, intended to be used for the conveyance of liquid and gaseous media as well as solid matter in fluids for industrial applications under pressure or vacuum conditions, such as the following examples:

— chemical plants;

— industrial sewerage engineering;

— power engineering (e.g. cooling and general purpose water);

— mining;

— electroplating and pickling plants;

— semiconductor industry;

— agricultural production plants;

— fire fighting;

— water treatment;

— geothermal;

— compressed air applications.

NOTE 2 Where relevant, national regulations (e.g. water treatment) are applicable, other application areas are permitted if the requirements of this International Standard and/or applicable national requirements are fulfilled. National regulations in respect of fire behaviour and explosion risk are applicable.

Characteristics and requirements which are applicable for all materials (PB, PE, PE-RT, PE-X, or PP) are covered by the relevant clauses of this International Standard. Those characteristics and requirements which are dependent on the material are given in the relevant normative annex for each material (see Table 1).

Table 1 — Material-specific annexes

Material

Annex

Polybutene (PB)

A

Polyethylene (PE)

B

Polyethylene of raised temperature resistance (PE-RT)

C

Crosslinked polyethylene (PE-X)

D

Polypropylene (PP)

E

Components conforming to any of the product standards listed in the bibliography or with national standards, as applicable, may be used with components conforming to this International Standard, provided that they conform to the requirements for joint dimensions and to the relevant requirements of this International Standard.

2.0 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 7‑1, Pipe threads where pressure-tight joints are made on the threads — Part 1: Dimensions, tolerances and designation

ISO 179‑1, Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test

ISO 228‑1, Pipe threads where pressure-tight joints are not made on the threads — Part 1: Dimensions, tolerances and designation

ISO 1133‑1, Plastics — Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics — Part 1: Standard method

ISO 1167‑1:2006, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method

ISO 1167‑2:2006, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 2: Preparation of pipe test pieces

ISO 1167‑3:2007, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 3: Preparation of components

ISO 1167‑4:2007, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 4: Preparation of assemblies

ISO 1183‑1, Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pyknometer method and titration method

ISO 1183‑2, Plastics — Methods for determining the density of non-cellular plastics — Part 2: Density gradient column method

ISO 17885, Plastics piping systems — Mechanical fittings for pressure piping systems — Specifications

ISO 2505, Thermoplastics pipes — Longitudinal reversion — Test method and parameters

ISO 3126, Plastics piping systems — Plastics components — Determination of dimensions

ISO 3127, Thermoplastics pipes — Determination of resistance to external blows — Round-the-clock method

ISO 3501, Plastics piping systems — Mechanical joints between fittings and pressure pipes — Test method for resistance to pull-out under constant longitudinal force

ISO 4065, Thermoplastics pipes — Universal wall thickness table

ISO 4427‑1:2007, Plastics piping systems — Polyethylene (PE) pipes and fittings for water supply — Part 1: General

ISO 6964, Polyolefin pipes and fittings — Determination of carbon black content by calcination and pyrolysis — Test method

ISO/TR 7620, Rubber materials — Chemical resistance

ISO 9080:2012, Plastics piping and ducting systems — Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation

ISO 9854‑1, Thermoplastics pipes for the transport of fluids — Determination of Charpy impact properties — Part 1: General test method

ISO 9854‑2, Thermoplastics pipes for the transport of fluids — Determination of Charpy impact properties — Part 2: Test conditions for pipes of various materials

ISO 10147, Pipes and fittings made of crosslinked polyethylene (PE-X) — Estimation of the degree of crosslinking by determination of the gel content

ISO 11414, Plastics pipes and fittings — Preparation of polyethylene (PE) pipe/pipe or pipe/fitting test piece assemblies by butt fusion

ISO 11922‑1:2018, Thermoplastics pipes for the conveyance of fluids — Dimensions and tolerances — Part 1: Metric series

ISO 11357‑6, Plastics — Differential scanning calorimetry (DSC) — Part 6: Determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (dynamic OIT)

ISO 12162, Thermoplastics materials for pipes and fittings for pressure applications — Classification, designation and design coefficient

ISO 13477, Thermoplastics pipes for the conveyance of fluids — Determination of resistance to rapid crack propagation (RCP) — Small-scale steady-state test (S4 test)

ISO 13479:2022, Polyolefin pipes for the conveyance of fluids — Determination of resistance to crack propagation — Test method for slow crack growth on notched pipes

ISO 13953, Polyethylene (PE) pipes and fittings — Determination of the tensile strength and failure mode of test pieces from a butt-fused joint

ISO 14531‑1, Plastics pipes and fittings — Crosslinked polyethylene (PE-X) pipe systems for the conveyance of gaseous fuels — Metric series — Specifications — Part 1: Pipes

ISO 15512, Plastics — Determination of water content

ISO 16135, Industrial valves — Ball valves of thermoplastics materials

ISO 16136, Industrial valves — Butterfly valves of thermoplastics materials

ISO 16137, Industrial valves — Check valves of thermoplastics materials

ISO 16138, Industrial valves — Diaphragm valves of thermoplastics materials

ISO 16139, Industrial valves — Gate valves of thermoplastics materials

ISO 16770, Plastics — Determination of environmental stress cracking (ESC) of polyethylene — Full-notch creep test (FNCT)

ISO 16871, Plastics piping and ducting systems — Plastics pipes and fittings — Method for exposure to direct (natural) weathering

ISO 18488, Polyethylene (PE) materials for piping systems — Determination of Strain Hardening Modulus in relation to slow crack growth — Test method

ISO 18489:2015, Polyethylene (PE) materials for piping systems — Determination of resistance to slow crack growth under cyclic loading — Cracked Round Bar test method

ISO 18553, Method for the assessment of the degree of pigment or carbon black dispersion in polyolefin pipes, fittings and compounds

ISO 21787, Industrial valves — Globe valves of thermoplastics materials

EN 12099, Plastics piping systems — Polyethylene piping materials and components — Determination of volatile content

3.0 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

ISO Online browsing platform: available at https://www.iso.org/obp

IEC Electropedia: available at https://www.electropedia.org/

3.1 Geometrical definitions

NOTE The symbols de and e correspond to dey and ey, given in other International Standards such as ISO 11922‑1.

3.1.1

nominal outside diameter

dn

specified outside diameter assigned to a nominal size DN/OD

Note 1 to entry: The nominal inside diameter of a socket is equal to the nominal outside diameter of the corresponding pipe.

Note 2 to entry: It is expressed in millimetres.

3.1.2

outside diameter at any point

de

value of the measurement of the outside diameter through its cross-section at any point of the pipe, rounded to the next greater 0,1 mm

3.1.3

mean outside diameter

dem

value of the measurement of the outer circumference of the pipe or spigot end of a fitting in any cross-section divided by π (= 3,142), rounded to the next greater 0,1 mm

3.1.4

mean inside diameter of a socket

arithmetical mean of two measured inside diameters perpendicular to each other

3.1.5

nominal size of flange

DN

numerical designation of the size of a flange for reference purposes and related to the manufacturing dimension in millimetres

3.1.6

out-of-roundness

ovality

difference between the maximum and the minimum outside diameter in the same cross-section of a pipe or spigot

3.1.7

nominal wall thickness

en

numerical designation of the wall thickness of a component, which is a convenient round number, approximately equal to the manufacturing dimension in millimetres (mm)

Note 1 to entry: For thermoplastics components conforming to the different annexes of ISO 15494, the value of the nominal wall thickness, en, is identical to the specified minimum wall thickness at any point, emin.

3.1.8

wall thickness at any point

e

wall thickness at any point around the circumference of a component rounded to the next greater 0,1 mm

3.1.9

pipe series

S

dimensionless number for pipe designation conforming to ISO 4065

Note 1 to entry: The relationship between the pipe series, S, and the standard dimension ratio, SDR, is given by the following formula as specified in ISO 4065:

Note 2 to entry: Flanges are designated on the basis of PN.

3.1.10

standard dimension ratio

SDR

numerical designation of a pipe series, which is a convenient round number, approximately equal to the dimension ratio of the nominal outside diameter, dn, and the nominal wall thickness, en

3.1.11

bend

Fitting curved in shape which the relative bending radius is ≥1 x dn

Note 1 to entry: Bend fittings are manufactured in different ways e.g. injection moulded, prefabricated or swept bends etc.

3.1.1 Material definitions

3.2.1

Compound

homogenous extruded mixture of base polymer and additives, i.e. anti-oxidants, pigments, carbon black, UV-stabilizers and others, at a dosage level necessary for the processing and use of components conforming to the requirements of this document

3.2.2

Virgin material

material in a form such as granules or powder that has not been subjected to use or processing other than that required for its manufacture, and to which no reworked or recyclable materials have been added

3.2.3

Reworked material

plastics materials from rejected unused products or trimmings that have been manufactured and retained within plants owned and operated by the same legal entity

3.2.4

Base polymer

Polymer produced by the material supplier for the manufacture of the compound according to this document.

3.2.5

Recyclate

plastics material resulting from the recycling of pre-consumer and post-consumer plastics products

Note 1 to entry: Also referred to as “secondary raw material” or “recycled plastics” or “regenerate”.

Note 2 to entry: Recycling can be chemical, physical or mechanical

3.2.6

melt mass-flow rate

MFR

value relating to the viscosity of the molten material at a specified temperature and load

Note 1 to entry: It is expressed in grams per 10 min (g/10 min).

3.1.2 Definitions related to material characteristics

3.3.1

lower confidence limit of the predicted hydrostatic strength

σLPL

quantity with the dimensions of stress, which represents the 97,5 % lower confidence limit of the predicted hydrostatic strength at a temperature, θ, and time, t

Note 1 to entry: It is expressed in megapascals.

3.3.2

minimum required strength

MRS

value of σLPL at 20 °C and 50 years, rounded down to the next smaller value of the R10 series or the R20 series

Note 1 to entry: The R10 series conforming to ISO 3[1] and the R20 series to ISO 497[2].

3.3.3

design stress

σs

allowable stress for a given application at 20 °C that is derived from the MRS by dividing it by the coefficient C

Note 1 to entry: Design stress can be calculated using the following formula:

Note 2 to entry: It is expressed in megapascals.

3.3.4

design coefficient

C

coefficient with a value greater than one which takes into consideration service conditions as well as the properties of the components of a piping system other than those represented in the lower confidence limit

Note 1 to entry: Minimum design coefficients are defined in ISO 12162.

Note 2 to entry: There might be a need of additional service factors depending on the service conditions as described in annex F to calculate the overall design coefficient.

3.1.3 Definitions related to service conditions

3.4.1

nominal pressure

PN

numerical designation used for reference purposes related to the mechanical characteristics of the components of a piping system.

Note 1 to entry: A pressure, in bar, with the numerical value of PN is identical with the pressure, PS, as defined by Reference [3] if both pressures are taken at 20 °C.

Note 2 to entry: For plastics piping systems conveying water, it corresponds to the maximum continuous operating pressure in bar, which can be sustained for water at 20 °C for 50 years, based on the following minimum design coefficient:

where

 

σs

is expressed in MPa;

 

PN

is expressed in bar.

Note 3 to entry: 1 bar = 0,1 MPa = 105 Pa; 1 MPa= 1 N/mm2.

3.4.2

hydrostatic stress

σ

stress induced in the wall of a pipe when an internal hydrostatic pressure is applied

Note 1 to entry: The hydrostatic stress is related to the applied internal hydrostatic pressure, in bar p, the wall thickness, e, at any point and the mean outside diameter, dem, of a pipe and calculated using the following formula:

Note 2 to entry: Formula is applicable for pipes only.

Note 3 to entry: It is expressed in megapascals.

3.4.3

long-term hydrostatic stress

σLTHS

quantity with the dimensions of stress, which represents the predicted mean strength at a temperature T and time t

Note 1 to entry: It is expressed in megapascals.

[SOURCE: ISO 9080:2012, 3.9]

4.0 Symbols and abbreviated terms

4.1 Symbols

C

design coefficient

de

outside diameter (at any point)

dem

mean outside diameter

dn

nominal outside diameter

DN

nominal size of flange

e

wall thickness (at any point)

en

nominal wall thickness

hf

height of the flange adaptor shoulder

l0

free length

P

internal hydrostatic pressure

pc

Highest crack-arrest pressure below the lowest crack-propagation pressure

ps

maximum allowable pressure

rf

radius of shoulder of flange adapter

T

temperature

t

time

ρ

material density

σ

hydrostatic stress

σLPL

lower confidence limit of the predicted hydrostatic strength

σLTHS

long-term hydrostatic strength

σs

design stress

4.1.1 Abbreviated terms

MFR

melt mass-flow rate

MOP

maximum operating pressure

MRS

minimum required strength

OIT

oxidation induction time

PB

polybutene

PE

polyethylene

PE 80

polyethylene designated on the basis of the minimum required strength

PE 100

polyethylene designated on the basis of the minimum required strength

PE 100-RC

polyethylene designated on the basis of the minimum required strength and having raised crack resistance

PE-RT

polyethylene of raised temperature resistance

PE-X

crosslinked polyethylene

PP

polypropylene

PP-H

polypropylene homopolymer

PP-B

polypropylene block-copolymer

PP-R

polypropylene random-copolymer

PP-RCT

polypropylene random-copolymer with modified crystallinity

PN

nominal pressure

S

pipe series S

SDR

standard dimension ratio

TIR

true impact rate

5.0 Material

5.1 General

The material from which the components are made shall either be PB, PE, PE-RT, PE-X, or PP, as applicable, to which are added those additives that are needed to facilitate the manufacture of pipes, fittings, and valves conforming to this International Standard.

Note: For PEX, the material is only existing in form of a component (crosslinked pipe)

The additives used shall be uniformly dispersed.

The additives shall not be dosed separately or together in quantities sufficient to impair the fabrication or fusion characteristics of the component or to impair the chemical, physical, or mechanical characteristics as specified in this International Standard.

5.1.1 Hydrostatic strength properties

The material shall be evaluated according to ISO 9080 by analysis of sustained pressure tests carried out in accordance with ISO 1167‑1 and ISO 1167‑2 to classify the material in accordance with ISO 12162.

Conformity of the relevant material to the reference curves given for PB (see Annex A), PE (see Annex B), PE-RT (see Annex C), PE-X (see Annex D), and PP (see Annex E) shall be proven according to the applicable Annex of this International Standard.

For design, these reference curves shall be used as a basis.

Classification and verification of conformity to reference curves of the material shall be done by the compound manufacturer.

NOTE In some cases, the component manufacturer can be regarded as the raw compound manufacturer.

Where fittings and valves are manufactured from the same material as pipes, the material classification and verification of conformity to reference curves shall be the same as for pipes.

For the classification and verification of conformity to reference curves of a material intended only for the manufacture of fittings and valves, the test piece can be an injection-moulded or extruded test piece in form of a pipe.

5.1.2 Material characteristics

5.1.3 General

The details of the material characteristics of PB, PE, PE-RT, PE-X, and PP mechanical and physical properties with requirements are given in the applicable Annex of this International Standard. Biobased material can be used in case the mass balance is required by the purchaser.

5.1.4 Use of reworked and recyclate material

The use of the manufacturer's own reworked material obtained during the production and production testing of products conforming this document is permitted in addition to the use of virgin material. Reworked material obtained from external sources and recyclate material shall not be used.

5.1.5 Resistance to rapid crack propagation, RCP

For a pipeline systems carrying air or a compressible gas, for design purposes, the resistance of the material to the phenomenon known as rapid crack propagation shall be taken into account (see ISO 4427‑1:2007, Annex B). The critical pressure pc is dependent on the material, pipe diameter, and operating temperature.

The critical pressure pc measured in accordance with ISO 13477 S4 test shall be greater than 1,5 times the maximum operating pressure of the pipeline system.

Information provided by the pipe or material supplier shall be taken into account when designing an industrial pipeline system for the transport of air or a compressible gas.

ISO 4437‑2[4] defines the maximum operating pressure MOP for Polyethylene (PE) pipe for gas application considering the RCP performance. PE 100 materials can be operated up to 10 bar at 0 °C depending on wall thickness.

Crosslinked polyethylene (PE-X) pipe produced in accordance with ISO 14531‑1 has been shown to be resistant to RCP at temperatures down to −50 °C.

Additional consideration shall be taken on the safety and the mechanical performance of the system in case of vacuum and gaseous applications due to potential risk of buckling, collapse or burst

5.2 Materials for components not made from PB, PE, PE-RT, PE-X, or PP

5.2.1 General

All components shall conform to the relevant International Standard(s). Alternative standards may be applied in cases where suitable International Standard(s) do not exist. In all cases, fitness for purpose of the components shall be demonstrated.

Materials and constituent elements used in making the relevant component (including rubber, greases, and any metal parts as may be used) shall have comparable resistance to the external and internal environments as all other elements of the piping system according to this International Standard.

Materials other than PB, PE, PE-RT, PE-X, or PP in contact with components conforming to this International Standard shall not adversely affect the performance of the components or initiate stress cracking.

5.2.2 Metallic materials

All metal parts susceptible to corrosion shall be adequately protected.

When dissimilar metallic materials are used which can be in contact with moisture, steps shall be taken to avoid the possibility of galvanic corrosion.

5.2.3 Sealing materials

Sealing materials shall have no detrimental effects on the properties of the components, joints, and assemblies.

5.2.4 Other materials

Greases or lubricants shall not exude onto fusion areas and shall not affect the long-term performance of materials conforming to this International Standard.

6.0 General characteristics

6.1 Appearance

When viewed without magnification, the internal and external surfaces of the components shall be smooth, clean, and free from scoring, cavities, and other surface defects to an extent that would prevent conformity to this International Standard. The components shall not contain visible impurities.

Each end of a component shall be square to its axis and shall be deburred.

6.1.1 Colour

The colour of the components depends on the material used and shall be as given for PB, PE, PE-RT, PE-X, or PP in the applicable Annex of this International Standard.

NOTE Attention is drawn to the need to take account of any relevant legislation relating to the colour coding of piping in respect of its purpose or contents for the location in which the components are intended to be used.

6.1.2 Influence of UV radiation

Components for external above ground installations shall be adequately protected against UV radiation or the material shall be resistant to UV radiation for the intended application. For products which are usually stored outside in direct sunlight prior to installation, the effect of UV radiation shall be taken into account. To assess materials for resistance to UV radiation for storage purposes, pipe is subject to a cumulative radiant exposure of ≥3,5 GJ/m2 in accordance with ISO 16871. Following this exposure, the pipe is assessed for any significant change in mechanical properties.

For component not for external above ground installations or not stored outside in the direct sunlight by the manufacturer, distributor or on the job site, the effect of UV radiation may be neglected.

6.1.3 Resistance to rapid crack propagation, RCP

For a pipeline systems carrying air or a compressible gas, for design purposes, the resistance of the material to the phenomenon known as rapid crack propagation shall be taken into account (see ISO 4427‑1:2007, Annex B). The critical pressure pc is dependent on the material, pipe diameter, and operating temperature.

The critical pressure pc measured in accordance with ISO 13477 S4 test shall be greater than 1,5 times the maximum operating pressure of the pipeline system.

Information provided by the pipe or material supplier shall be taken into account when designing an industrial pipeline system for the transport of air or a compressible gas.

ISO 4437‑2[4] defines the maximum operating pressure MOP for Polyethylene (PE) pipe for gas application considering the RCP performance. PE 100 materials can be operated up to 10 bar at 0 °C depending on wall thickness.

Crosslinked polyethylene (PE-X) pipe produced in accordance with ISO 14531‑1 has been shown to be resistant to RCP at temperatures down to −50 °C.

Additional consideration shall be taken on the safety and the mechanical performance of the system in case of vacuum and gaseous applications due to potential risk of buckling, collapse or burst

7.0 Geometrical characteristics

7.1 General

The measurement shall not be made less than 24 h after manufacture.

Dimensions shall be measured in accordance with ISO 3126 at (23 ± 2) °C after being conditioned for at least 4 h unless specified otherwise in the relevant material annex.

Indirect measurement during the stage of production is allowed at shorter time periods providing that evidence is shown of correlation.

The given figures are schematic sketches only, to indicate the relevant dimensions. They do not necessarily represent the manufactured component(s). The given dimensions shall be followed.

Dimensions not given shall be specified by the manufacturer.

7.1.1 Mean outside diameters, out-of-roundness (ovality), and tolerances

For components made from PB, PE, PE-RT, PE-X or PP, as applicable, the diameters, out-of-roundness (ovality) and related tolerances shall conform to the applicable annex of this International Standard.

The out-of-roundness (ovality) shall be measured at the point of manufacture.

7.1.2 Wall thicknesses and related tolerances

For components made from PB, PE, PE-RT, PE-X or PP, as applicable, the wall thicknesses and related tolerances shall conform to the applicable annex of this International Standard.

7.1.3 Angles

The permitted deviations from the nominal or declared angle for a nonlinear fitting shall be ±2° where the angle comprises the relevant change of axis of the flow through the fitting.

NOTE The preferred nominal angles for a nonlinear fitting are 45° or 90°.

7.1.4 Laying lengths

The laying lengths for fittings and valves shall be declared by the manufacturer.

The laying lengths are intended to assist in the design of moulds and are not intended to be used for quality control purposes. ISO 265‑1[5] may be used as a guideline.

7.1.5 Threads

Threads used for jointing shall conform to ISO 7‑1. Where a thread is used as a fastening thread for jointing an assembly (e.g. union nuts), a thread conforming to ISO 228‑1 is preferred.

7.1.6 Mechanical fittings

Mechanical fittings used for jointing shall conform to conform to ISO 17885 provided that their joint dimensions are in accordance with the applicable dimensions of components conforming to this International Standard.

7.1.7 Joint dimensions of valves

The joint dimensions of valves shall conform to the relevant dimensions of pipes and fittings conforming to this International Standard.

8.0 Mechanical characteristics

8.1 Resistance to internal pressure of components

Components shall withstand the hydrostatic stress induced by internal hydrostatic pressure without bursting or leaking when tested in accordance with ISO 1167‑1, ISO 1167‑2, and ISO 1167‑3 and the test conditions specified for PB, PE, PE-RT, PE-X, or PP in the applicable annex of this International Standard.

8.1.1 Calculation of the test pressure for components

8.1.2 Pipes

The hydrostatic test pressure, p, expressed in bar, shall be determined for pipes using Formula (1):

(1)

where σ is the hydrostatic stress for PB, PE, PE-RT, PE-X, or PP conforming to the applicable Annex of this International Standard.

8.1.3 Fittings

The hydrostatic test pressure, p, expressed in bar, shall be determined for fittings using Formula (2). For S and SDR respectively, the value of the corresponding pipe shall be taken:

(2)

8.1.4 Valves

The hydrostatic test pressure, p, expressed in bar, is defined for valves in ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type.

9.0 Physical characteristics

The physical characteristics of components made from PB, PE, PE-RT, PE-X, or PP shall conform to the applicable annex of this International Standard.

10.0 Chemical characteristics

10.1 Effects on the component material(s)

Where fluids other than water are to be conveyed, the effect of the fluid on the component material shall be considered.

The components shall withstand the mechanical, thermal, and chemical demands to be expected and shall be resistant to the fluids to be conveyed.

NOTE 1 Guidance is given in ISO/TR 10358[6] or by the component manufacturer.

Elastomeric materials used in the production of sealants in terms of classification of chemical resistance against fluids according to application shall be in accordance with type 1 in the ISO/TR 7620 standard.

NOTE 2 Guidance is given in ISO 4433‑1[7] and ISO 4433‑2,[8] in case it is necessary to evaluate the chemical resistance and the classification of the pipe for a particular application.

10.1.1 Effects on the fluids

Where fluids other than water are to be conveyed, the effect of the component material on the fluid shall be considered.

11.0 Electrical characteristics

The electrical protection that shall be provided during the fusion process depends on the voltage and wave form (AC or DC). Definitions of electrical circuits and applicable protections are found in the relevant IEC standards.

Electrofusion fittings are part of an electrical circuit when connected to the control units.

For voltages greater than 25 V, direct human contact with energized parts shall not be possible when the fitting is in the fusion cycle during assembly in accordance with the instructions of the manufacturers of the fittings and of the assembly equipment, as applicable.

The tolerance on the electrical resistance of the fitting at 23 °C shall be stated by the manufacturer. The resistance shall be in between nominal resistance (–10 %) and nominal resistance [(+10 %) + 0,1 Ω].

NOTE 0,1 Ω is the assumed value of the contact resistance.

The surface finish of the terminal pins shall allow a minimum contact resistance in order to satisfy the resistance tolerance requirements.

12.0 Performance requirements

12.1 General

When components made from the same material conforming to this International Standard are jointed to each other, the pipes, fittings, valves, and the joints shall conform to the requirements of the applicable annex of this International Standard.

NOTE If test pressures defined for pipes are used for assemblies made from components of dissimilar materials (e.g. screwed joints, flanged joints), the resulting strain exceeds the strain occurring under service conditions. These strains unavoidably cause leakage. Reference is given in the material related isochronous stress-strain-diagrams to define the applicable test pressure.

12.1.1 Fusion compatibility

The manufacturer of components shall declare which components and materials conforming to this International Standard may be fused by using the same procedures (e.g. times, temperatures, fusion pressures) to conform to the requirements of this International Standard. If there is a need for deviation in fusion procedures, the manufacturer shall state this.

13.0 Classification of components

The classification of pipes shall be based on the pipe series, S, or the standard dimension ratio, SDR, or the nominal pressure, PN, as applicable.

The classification of fittings shall be based on the corresponding pipe together with the pipe series S or the standard dimension ratio, SDR, or the nominal pressure, PN, as applicable.

Valves shall be classified in accordance with the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type.

14.0 Design and installation

For the design and installation of thermoplastic piping systems for industrial applications, see Annex F.

15.0 Declaration of conformity

The manufacturer shall declare conformity to this International Standard by marking the component in accordance with Clause 16 and, under request, issue a statement of conformity.

NOTE Guidance on drafting the Declaration of conformity is given in ISO/IEC 17050-1[9] and ISO/IEC 17050-2[10].

16.0 Marking

16.1 General

Marking elements shall be printed or formed directly on the component or be on a label in such a way that after storage, weathering and handling, and the installation, legibility is maintained.

NOTE The manufacturer is not responsible for marking of the component being illegible due to actions caused during installation and use such as painting, scratching, covering, or by use of detergents, etc. unless agreed upon or specified by the manufacturer.

Marking shall not initiate cracks or other types of defects which adversely influence the performance of the component.

If printing is used, the colouring of the printed information shall differ from the basic colouring of the component.

The size of the marking shall be such that the marking is legible without magnification.

16.1.1 Minimum required marking of pipes

The minimum required marking of pipes shall conform to Table 2.

Pipes shall be marked at intervals of maximum 1 m, at least once per pipe.

Table 2 — Minimum required marking of pipes

Aspects

Marking or symbolc

Number of this standarda

ISO 15494

Manufacturer's name and/or trade mark

Name or symbol

Nominal outside diameter, dn

e.g. 110

Nominal wall thickness, en, or
pipe series, S, or standard dimension ratio, SDR, or
nominal pressure, PN

e.g. 10,0 or
e.g. S 5 or SDR 11 or
e.g. PN 10

Materiala

e.g. PP-H

Manufacturer's information

b

a If different types of a material are available, this shall be marked, e.g. PP-H or PP-R.

b For providing traceability, the following details shall be given:

—   production period, year and month, in figures or in code;

—   name or code for the production site if the manufacturer is producing at different sites.

c Information on abbreviations may be found in bibliography [11] and/or in national rules.

16.1.2 Minimum required marking of fittings

The minimum required marking of fittings shall conform to Table 3, except for fittings with dn ≤ 32 mm, for which the minimum required marking shall be directly on the fitting, as follows:

— manufacturer's name and/or trade mark;

— nominal outside diameter(s);

— material;

— nominal wall thickness, en, or pipe series S or SDR or PN, as applicable.

Table 3 — Minimum required marking of fittings

Aspects

Marking or symbole

Number of this standardaf

ISO 15494

Manufacturer's name and/or trade mark

Name or symbol

Nominal outside diameter(s), dn

e.g. 63-32-63

Nominal wall thickness, en, or
pipe series, S, or standard dimension ratio, SDR, or
nominal pressure, PN

e.g. 5,8 or
e.g. S 5 or SDR 11 or
e.g. PN 10

Nominal size DNb

e.g. DN 50

Materialc

e.g. PP-H

Manufacturer's information

d

a This information may either be marked directly on the fitting or on a label attached to the fitting or on the packaging. If different types of a material are available, this shall be marked, e.g. PP-H or PP-R.

b Applicable to flanges only.

c If different types of material are available, this shall be marked directly on the fitting or on a label attached to the fitting or on the packaging.

d For providing traceability, the following details shall be given:

—   production period, year and month, in figures or in code;

—   name or code for the production site if the manufacturer is producing at different sites.

e Information on abbreviations may be found in bibliography [11] and/or in national rules.

f Marking of prefabricated fitting shall be marked in conformity to the referenced standard and to this table.

16.1.3 Minimum required marking of valves

Valves shall be marked in accordance with the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type.


  1. (normative)

    Specific characteristics and requirements for industrial piping systems made from polybutene (PB)
    1. Material
      1. Material classification

The material in pipe form shall be evaluated in accordance with ISO 9080:2012 or equivalent where internal pressure tests are made in accordance with ISO 1167-1 and ISO 1167-2 to find the σLPL values. The σLPL values thus determined shall at least be as high as the corresponding values of the reference lines. Testing shall be carried out at temperatures stated below.

Temperatures: 20 °C; 60 °C to 82 °C; 95 °C; 110 °C.

NOTE 82 °C is equivalent to 180 °F, commonly used as a test temperature in ASTM standards.

PB shall have a minimum required strength, MRS, at least equal to 12,5 MPa.

NOTE According the scope of ISO 12230[12], for the sake of simplicity the designation polybutene and the abbreviation PB are used throughout.

The reference lines in this document are the ones of PB homopolymer. (PB-H)

      1. Material verification of conformity to reference curves

To prove conformance with the reference curves, two methods can alternatively be applied:

— mathematical method (ISO 9080):

the σLPL values, as determined by ISO 9080 in A.1.1, shall at least be as high as the corresponding values of the reference curves at all temperatures and times of relevance;

— graphical method:

The material shall be tested in accordance with 5.2 at 20 °C, 60 °C to 80 °C and 95 °C as well as at various hydrostatic (hoop) stresses in such a way that at each temperature, at least three failure times fall in each of the following time intervals.

— 10 h to 100 h;

— 100 h to 1 000 h;

— 1 000 h to 8 760 h;

— > 8 760 h.

In tests lasting more than 8 760 h, any time which is reached at a certain stress and time at least on or above the relevant reference curve may be considered as failure time

Conformance with the reference curves is demonstrated by plotting the individual experimental results on the graph. At least 97,5 % of them shall lie on or above the following reference curves.

Reference curves:

The mathematical description of the reference curves are given by Formula (A.1) and Formula (A.2) for the temperature range 10 °C to 110 °C, the graphical representation is given in Figure A.1 also for the temperature range of 10 °C to 110 °C.

First branch (i.e. the left hand portion of the curves as shown in Figure A.1).

—   PB: (A.1)

Second branch (i.e. the right hand portion of the curves as shown in Figure A.1).

—   PB: (A.2)

NOTE The calculation for PB is based on ISO 12230[12].

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure A.1 — Minimum required hydrostatic strength curves for PB

The endpoints of curves in the graph (Figure A.1) are given just as an example; the extrapolation time limit for a specific material (endpoints in the regression curves) has to be determined based on the method given in ISO 9080.

      1. Material characteristics

The material from which the components are manufactured shall conform to the requirements given in Table A.1.

Table A.1 — Material characteristics of PB

Characteristic

Requirementsa

Test parameters

Test method

Pigment
dispersion

≤ Grade 3

Preparation of
test pieces

Compression or
microtome cut b

ISO 18553

Thermal stability tested by
resistance to internal pressure at 110 °C

No failure during
the test period

End caps

Type A according
to ISO 1167‑1

ISO 1167‑1

ISO 1167‑2

Orientation

Free

Conditioning period

According to
ISO 1167‑1

Type of test

Water-in-air

Hydrostatic (hoop)
stress

Test temperature
Test period

2,4 MPa
110 °C
8 760 h

a Conformity to the requirements shall be declared by the raw compound manufacturer.

b In case of dispute, the compression method shall be used.

      1. Crystallization

Due to the slow crystallization, crystalline transformation, and shrinkage which takes places after PB compounds are cooled from the melt, physical and mechanical testing in accordance with A.4.1 and measurement of dimensions shall be delayed after extrusion or moulding, according to recommendations obtained from the manufacturer or material supplier. Components manufactured from PB compounds shall be conditioned in accordance with the manufacturer's recommendations prior to measurement of dimensions.

    1. General characteristics: Colour

Colour shall be agreed upon between manufacturer and purchaser.

    1. Geometrical characteristics
      1. Dimensions of pipes
        1. Diameters and related tolerances

The mean outside diameter, dem, and the related tolerances shall conform to Table A.2, appropriate to the tolerance grade, whereby the average value of the measurements of the outside diameter made at a distance of dn and 0,1dn from the end of the test pieces shall be within the tolerance range for dem specified in Table A.2.

        1. Out-of-roundness

The out-of-roundness for straight lengths shall conform to Table A.2 when measured at the point of manufacture. If other values for the out-of-roundness than those given in Table A.2 are necessary, they shall be agreed upon between manufacturer and purchaser.

For coiled pipes, the maximum out-of-roundness shall be specified by agreement between manufacturer and purchaser.

Table A.2 — Mean outside diameters, related tolerances and out-of-roundness of pipes

Dimensions in millimetres

Nominal
outside diameter
dn

Mean
outside diameter
dem

Tolerance of
outside diameter

Grade Aa

Out-of-roundnessb
(straight pipes)

Grade Ma

 

min.

 

max.

12

12,0

+0,3

1,0

16

16,0

+0,3

1,0

20

20,0

+0,3

1,0

25

25,0

+0,3

1,0

32

32,0

+0,3

1,0

40

40,0

+0,4

1,0

50

50,0

+0,5

1,2

63

63,0

+0,6

1,5

75

75,0

+0,7

1,8

90

90,0

+0,9

2,2

110

110,0

+1,0

2,7

125

125,0

+1,2

3,0

140

140,0

+1,3

3,4

160

160,0

+1,5

3,9

180

180,0

+1,7

4,4

200

200,0

+1,8

4,8

225

225,0

+2,1

5,4

250

250,0

+2,3

6,0

a In accordance with ISO 11922‑1.

b For straight pipes: Grade M (0,024dn).

Tolerances of the outside diameter are rounded up to the next 0,1 mm.

        1. Wall thicknesses and related tolerances

The wall thickness, e, and the related tolerances shall conform to Table A.3.

Components intended to be welded shall have a minimum wall thickness of 1,9 mm.

Table A.3 — Wall thicknesses and related tolerances

Dimensions in millimetres

Nominal
outside
diameter

Wall thickness, e, and related tolerancesc

Pipe series S and standard dimension ratio, SDR

S 10
SDR 21

S 8
SDR 17

S 6,3
SDR 13,6

S 5
SDR 11

S 4
SDR 9

S 3,2
SDR 7,4

dn

en

a

en

a

en

a

en

a

en

a

en

a

12

1,3b

+0,3

1,3b

+0,3

1,3b

+0,3

1,3b

+0,3

1,4

+0,3

1,7

+0,3

16

1,3

+0,3

1,3

+0,3

1,3

+0,3

1,5

+0,3

1,8

+0,3

2,2

+0,4

20

1,3

+0,3

1,3

+0,3

1,5

+0,3

1,9

+0,3

2,3

+0,4

2,8

+0,4

25

1,3

+0,3

1,5

+0,3

1,9

+0,3

2,3

+0,4

2,8

+0,4

3,5

+0,5

32

1,6

+0,3

1,9

+0,3

2,4

+0,4

2,9

+0,4

3,6

+0,5

4,4

+0,6

40

1,9

+0,3

2,4

+0,4

3,0

+0,4

3,7

+0,5

4,5

+0,6

5,5

+0,7

50

2,4

+0,4

3,0

+0,4

3,7

+0,5

4,6

+0,6

5,6

+0,7

6,9

+0,8

63

3,0

+0,4

3,8

+0,5

4,7

+0,6

5,8

+0,7

7,1

+0,9

8,6

+1,0

75

3,6

+0,5

4,5

+0,6

5,6

+0,7

6,8

+0,8

8,4

+1,0

10,3

+1,2

90

4,3

+0,6

5,4

+0,7

6,7

+0,8

8,2

+1,0

10,1

+1,2

12,3

+1,4

110

5,3

+0,7

6,6

+0,8

8,1

+1,0

10,0

+1,1

12,3

+1,4

15,1

+1,7

125

6,0

+0,7

7,4

+0,9

9,2

+1,1

11,4

+1,3

14,0

+1,5

17,1

+1,9

140

6,7

+0,8

8,3

+1,0

10,3

+1,2

12,7

+1,4

15,7

+1,7

19,2

+2,1

160

7,7

+0,9

9,5

+1,1

11,8

+1,3

14,6

+1,6

17,9

+1,9

21,9

+2,3

180

8,6

+1,0

10,7

+1,2

13,3

+1,5

16,4

+1,8

20,1

+2,2

24,6

+2,6

200

9,6

+1,1

11,9

+1,3

14,7

+1,6

18,2

+2,0

22,4

+2,4

27,4

+2,9

225

10,8

+1,2

13,4

+1,5

16,6

+1,8

20,5

+2,2

25,2

+2,7

30,8

+3,2

250

11,9

+1,3

14,8

+1,6

18,4

+2,0

22,7

+2,4

27,9

+2,9

34,2

+3,6

a Tolerance of the wall thickness: 0,1en + 0,1 mm, rounded up to the next 0,1 mm.

b For dn = 12, a non-preferred wall thickness of 1,1 mm may be chosen.

c All dimensions correspond to ISO 4065.

      1. Dimensions of fittings
        1. General

This Annex is applicable for the following types of fittings:

— socket fusion fittings;

— electrofusion fittings;

— flange adaptors and loose backing flanges;

— mechanical fittings.

        1. Socket fusion fittings
          1. Types of socket fusion fittings

Socket fusion fittings (see Figure A.2) shall be classified in the following two types.

Type A: Fittings intended to be used with pipes having dimensions as given in A.3.1 where no external machining of the pipe is required.

Type B: Fittings intended to be used with pipes having dimensions as given in A.3.1 where machining of the outside surface of the pipe is necessary in accordance with the instructions of the manufacturer.

          1. Diameters and lengths of sockets

The nominal diameter(s), dn, of a socket fusion fitting shall correspond to, and be designated by, the nominal outside diameter(s) of the pipe(s) for which it is designed.

The diameters and lengths of sockets for socket fusion fittings of type A shall conform to Table A.4. For socket fusion fittings of type B, the diameters and lengths of sockets shall conform to Table A.5.

Key

D1

inside diameter of the socket mouth which comprises the mean diameter of the circle at the inner section of the extension of the socket with the plane of the socket mouth

D2

mean inside diameter of the socket root which comprises the mean diameter of the circle in a plane parallel to the plane of the socket mouth and separated from it by a distance of L1 min

D3

minimum diameter of the flow channel (bore) through the body of a fitting

L1 min

minimum socket length which comprises the distance from the socket mouth to the shoulder

L2 min

minimum insertion length which comprises the depth of the penetration of the heated pipe end into the socket

R

minimum radius at socket root

Figure A.2 — Diameters and lengths of socket fusion fittings

Table A.4 — Diameters and lengths of sockets for socket fusion fittings of type A

Dimensions in millimetres

Nominal outside diameter of pipe

Mean outside diameter of pipe

Mean inside diameter

Out-of-roundness

Bore

Radius at socket root

Socket length

Penetration of pipe into socket

Socket mouth

Socket root

dn

dem

D1

D2

D3a

R

L1b

L2c

 

min.

min.

 

min.

 

max.

min.

max.

min.

min.

16

16,0

15,2

+0,3

15,1

+0,3

0,4

9,0

2,5

13,0

9,5

20

20,0

19,2

+0,3

19,0

+0,3

0,4

13,0

2,5

14,5

11,0

25

25,0

24,2

+0,3

23,9

+0,4

0,4

18,0

2,5

16,0

12,5

32

32,0

31,1

+0,4

30,9

+0,4

0,5

25,0

3,0

18,0

14,5

40

40,0

39,0

+0,4

38,8

+0,4

0,5

31,0

3,0

20,5

17,0

50

50,0

48,9

+0,5

48,7

+0,5

0,6

39,0

3,0

23,5

20,0

63

63,0

61,9

+0,5

61,6

+0,5

0,6

49,0

4,0

27,5

24,0

75

75,0

74,3

+0,6

73,1

+0,6

1,0

59,0

4,0

30,0

26,0

90

90,0

89,3

+0,6

87,9

+0,6

1,0

69,0

4,0

33,0

29,0

110

110,0

109,4

+0,6

107,7

+0,6

1,0

85,0

4,0

37,0

32,5

a Only applicable, if a shoulder exists.

b Length of the socket (rounded), d16 to d63: L1 min = 0,3dn + 8,5 mm; d75 to 110: L1 min = 0,2dn + 15 mm

c Penetration of pipe into socket, d16 to d63; L2 min = L1 min – 3,5 mm; d75 to d110; No formula available

Table A.5 — Diameters and lengths of sockets for socket fusion fittings of type B

Dimensions in millimetres

Nominal outside diameter of pipe

Mean outside diameter of pipe

Mean inside diameter

Out-of-roundness

Bore

Radius at socket root

Socket length

Penetration of pipe into socket

Socket mouth

Socket root

dn

dem

D1

D2

D3 a

R

L1b

L2c

 

min.

max.

min.

 

min.

 

max.

min.

max.

min.

min.

16

15,8

16,0

15,2

+0,3

15,1

+0,3

0,4

11,0

2,5

13,0

9,5

20

19,8

20,0

19,2

+0,3

19,0

+0,3

0,4

13,0

2,5

14,5

11,0

25

24,8

25,0

24,2

+0,3

23,9

+0,4

0,4

18,0

2,5

16,0

12,5

32

31,8

32,0

31,1

+0,4

30,9

+0,4

0,5

25,0

3,0

18,0

14,5

40

39,8

40,0

39,0

+0,4

38,8

+0,4

0,5

31,0

3,0

20,5

17,0

50

49,8

50,0

48,9

+0,5

48,7

+0,5

0,6

39,0

3,0

23,5

20,0

63

62,7

63,0

61,9

+0,6

61,6

+0,5

0,6

49,0

4,0

27,5

24,0

75

74,7

75,0

73,7

+0,5

73,4

+0,5

1,0

58,0

4,0

31,0

27,5

90

89,7

90,0

88,6

+0,6

88,2

+0,6

1,0

69,0

4,0

35,5

32,0

110

109,6

110,0

108,4

+0,6

108,0

+0,6

1,0

85,0

4,0

41,5

38,0

a Only applicable if a shoulder exists.

b Length of the socket (rounded), L1 min = 0,3dn + 8,5 min.

c Penetration of pipe into socket, L2 min = L1 min – 3,5 mm.

          1. Other dimensions

Other dimensions of socket fusion fittings shall be specified by the manufacturer.

        1. Electrofusion fittings
          1. Dimensions of sockets of electrofusion fittings

The dimensions of sockets of electrofusion fittings (see Figure A.3) shall conform to Table A.6.

In the case of a fitting having sockets of different sizes (e.g. reduction), each socket shall conform to the requirements of the corresponding nominal diameter.

In case of using spigot end fittings, the outside tubular length of the fusion end shall allow the assembly with an electrofusion fitting.

Key

D1

mean inside diameter in the fusion zone measured in a plane parallel to the plane of the mouth at a distance of L3 + 0,5L2 from that face

D2

bore, which is the minimum diameter of the flow channel through the body of the fitting

L1

depth of penetration of the pipe or male end of a spigot end fitting; in case of a coupling without stop, it is not greater than half the total length of the fitting

L2

heated length within a socket as declared by the manufacturer, to be the nominal length of the fusion zone

L3

distance between the mouth of the fitting and the start of the fusion zone as declared by the manufacturer to be the nominal unheated entrance length of the fitting (L3 ≥ 5 mm)

Figure A.3 — Dimensions of sockets of electrofusion fittings

Table A.6 — Dimensions of sockets of electrofusion fittings

Dimensions in millimetres

Nominal diameter of fitting

Depth of penetrationa

Length of the fusion zone

dn

L1

L2

 

min.

max.

min.

16

20

35

10

20

20

37

10

25

20

40

10

32

20

44

10

40

20

49

10

50

20

55

10

63

23

63

11

75

25

70

12

90

28

79

13

110

32

85

15

125

35

90

16

140

38

95

18

160

42

101

20

a The manufacturer shall declare the actual maximum and minimum values of D1 and L1 to determine suitability for clamping and joint assembly.

The mean inside diameter of the fitting in the middle of the fusion zone (see D1 in Figure A.3) shall be not less than dn.

          1. Other dimensions

Other dimensions of electrofusion fittings shall be specified by the manufacturer.

        1. Flange adaptors and loose backing flanges
          1. Dimensions of flange adaptors for socket fusion

The dimensions of flange adaptors for socket fusion (see Figure A.4) shall conform to Table A.7.

Key

Df1

outside diameter of flange adaptor

Df2

outer diameter of the chamfer on shoulder

rf

radius of chamfer on shoulder

Figure A.4 — Dimensions of flange adaptors for socket fusion

Table A.7 — Dimensions of flange adaptors for socket fusion

Dimensions in millimetres

Nominal outside diameter of the corresponding pipe

Outside diameter of chamfer on shoulder

Outside diameter of flange adaptor

Radius of chamfer on shoulder

Height of the flange adaptor shoulder

dn

Df1

Df2

rf

hf

16

22

40

3

6

20

27

45

3

7

25

33

58

3

9

32

41

68

3

10

40

50

78

3

11

50

61

88

3

12

63

76

102

4

14

75

90

122

4

16

90

108

138

4

17

110

131

158

4

18

          1. Dimensions of loose backing flanges for use with flange adaptors for socket fusion

The dimensions of loose backing flanges for use with flange adaptors for socket fusion (see Figure A.5) shall conform to Table A.8.

Key

df1

inside diameter of flange

df2

pitch circle diameter of bolt holes

df3

outside diameter of flange

df4

diameter of bolt holes

r

radius of flange

h

thickness of backing ring

NOTE The thickness, h, of the loose backing flange is dependent on the material used.

Figure A.5 — Dimensions of loose backing flanges for use with flange adaptors for socket fusion

Table A.8 — Dimensions of loose backing flanges for use with flange adaptors for socket fusion

Dimensions in millimetres

Nominal
outside
diameter
of the corresponding pipe

Nominal size of flange

Inside
diameter of flange

Pitch circle diameter of bolt holes

Outside diameter of flange

Diameter of bolt holes

Radius of flange

Number of bolt holes

Metric thread of bolt

dn

DN

df1

df2

df3

df4

r

N

 

 

 

 

min.

 

 

 

16

10

23

60

90

14

3

4

M12

20

15

28

65

95

14

3

4

M12

25

20

34

75

105

14

3

4

M12

32

25

42

85

115

14

3

4

M12

40

32

51

100

140

18

3

4

M16

50

40

62

110

150

18

3

4

M16

63

50

78

125

165

18

3

4

M16

75

65

92

145

185

18

3

4

M16

90

80

110

160

200

18

3

8

M16

110

100

133

180

220

18

3

8

M16

    1. Mechanical characteristics
      1. Mechanical characteristics of pipes and fittings

When tested as specified in Table A.9 using the indicated parameters, the components shall withstand the hydrostatic stress without bursting or leaking under the test conditions given in Table A.10.

Table A.9 — Requirements for internal pressure testing

Characteristic

Requirements

Test parameters

Test method

Hydrostatic (hoop) stress
MPa

Time

h

Resistance to
internal
pressure
at 20 °C

No failure during the test period

15,5

≥1

ISO 1167‑1

ISO 1167‑2

ISO 1167‑3

Resistance to
internal
pressure
at 95 °C

6,2

≥165

ISO 1167‑1

ISO 1167‑2

ISO 1167‑3

Resistance to
internal
pressure
at 95 °C

6,0

≥1 000

ISO 1167‑1

ISO 1167‑2

ISO 1167‑3

Table A.10 — Test conditions for internal pressure testing

Test parameters

End caps

Orientation

Conditioning period

Type of test

Type A according to ISO 1167‑1

Free

In accordance with ISO 1167‑1

Water-in-water or water-in-aira

a In case of dispute, water-in-water shall be used.

      1. Mechanical characteristics of valves

The valves shall conform to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type.

    1. Physical characteristics
      1. Physical characteristics of pipes

When tested in accordance with the test methods as specified in Table A.11 using the indicated parameters, the pipe shall have physical characteristics conforming to the requirements given in Table A.11.

Table A.11 — Physical characteristics of pipes

Characteristic

Requirements

Test parameters

Test method

Melt mass-flow rate (MFR)

After processing
maximum deviation of ±20 % of the value measured on the batch used to manufacture the pipe

Test temperature
Loading mass
Time
Number of test pieces

190 °C
5 kg or 2,16 kg
10 min
According to ISO 1133‑1

ISO 1133‑1

Thermal
stability tested by resistance to internal
pressure at 110 °C

No failure during
the test period

End caps

Type A according
to ISO 1167‑1

ISO 1167‑1

ISO 1167‑2

Orientation

Free

Conditioning period

According to
ISO 1167‑1

Type of test

Water-in-air

Hydrostatic (hoop)
stress
Test temperature
Test period

2,4 MPa
110 °C
8 760 h

Longitudinal reversiona

Wall thickness ≤16 mm

≤3 %

Original appearance of pipe shall remain

Temperature

Length of test piece

Immersion time:

Test method

Number of test pieces

110 °C

200 mm

1 h

Free

Shall conform to ISO 2505

ISO 2505

a The choice of method A or method B is free. In case of dispute, method B shall be used.

      1. Physical characteristics of fittings

When tested in accordance with the test method as specified in Table A.12 using the indicated parameters, the fitting shall have physical characteristics conforming to the requirements given in Table A.12.

Table A.12 — Physical characteristics of fittings

Characteristic

Requirements

Test parameters

Test method

Melt mass-flow rate (MFR)

After processing maximum deviation of ±30 % of the value measured on the batch used to manufacture the fitting

Test temperature
Loading mass

190 °C
5 kg or 2,16 kg

ISO 1133‑1

      1. Physical characteristics of valves

In addition to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type, the physical characteristics of valves shall conform to A.5.2.

    1. Fitness for purpose of the system

Fitness for purpose of the system shall be deemed to apply when test pieces assembled in accordance with 12.2 and tested using the test methods and indicated parameters as specified in Table A.13 conforming to the requirements given in Table A.13.

Table A.13 — General requirements for fitness for purpose of the system

Characteristic

Requirements

Test parameters

Test method

Hydrostatic strength
at 95 °C

No failure
during the
test period

End caps

Orientation

Test temperature

Type of test

Hydrostatic (hoop)
stress

Type A according to ISO 1167‑1

Free

95 °C

Water-in-water or water-in-aira

6,0 MPa

ISO 1167‑1

ISO 1167‑4

Conditioning period

Test period

≥1 h

1 000 h

a In case of dispute, water-in-water shall be used.


  1. (normative)

    Specific characteristics and requirements for industrial piping systems made from polyethylene (PE)
    1. Material
      1. General

This Annex is applicable to the following polyethylene designations:

— polyethylene (PE 80);

— polyethylene (PE 100):

— polyethylene raised crack resistance (PE 100-RC).

      1. Material classification and designation

Compounds shall be designated by the type of PE material. The minimum required strength (MRS)shall conform to Table B.1 when tested in the form of pipe.

The compound shall be evaluated in accordance with ISO 9080 on pipes at least at three temperatures, where the first temperature is either 20 °C or 23 °C and the second temperature at 80 °C, and the third temperature is free between 30 °C and 70 °C, to find the σLPL. The MRS value shall be derived from the σLPL and the compound shall be classified by the compound manufacturerin accordance with ISO 12162.

At 80 °C, there shall be no knee detected in the regression curve at t < 5 000 h.

NOTE Testing has shown that for many compounds, no knee is detected before 1 year (8 760 h) at 80 °C.

The conformity of the designation of the compound to the classification given in Table B.1 shall be demonstrated by the compound manufacturer.

The applicable PE shall have a minimum required strength, MRS, as given in Table B.1.

Table B.1 — MRS-values of designated PE

PE designation

MRS-value

PE 80

≥ 8,0 MPa

PE 100 and PE 100-RC

≥ 10,0 MPa

      1. Material verification of conformity to reference curves

To prove conformance with the reference curves, two methods can alternatively be applied:

— mathematical method (ISO 9080):

the σLPL values, as determined in B.1.2, shall at least be as high as the corresponding values of the reference curves at all temperatures and times of relevance;

— graphical method.

The material shall be tested in accordance with 5.2 at 20 °C or 23 °C, between 30 °C and 70 °C and 80 °C, as well as at various hydrostatic (hoop) stresses in such a way that at each temperature, at least three failure times fall in each of the following time intervals:

— 10 h to 100 h;

— 100 h to 1 000 h;

— 1 000 h to 8 760 h;

— > 8 760 h.

In tests lasting more than 8 760 h, any time which is reached at a certain stress and time at least on or above the relevant reference curve may be considered as failure time.

Conformance with the reference curves is demonstrated by plotting the individual experimental results on the graph. At least 97,5 % of them shall lie on or above the following reference curves.

Reference curves:

The mathematical description of the reference curves are given by Formula (B.1) to Formula (B.4) for the temperature range 10 °C to 80 °C, the graphical representations are given in Figure B.1 (PE 80), and Figure B.2 (PE 100 and PE 100-RC ) also for the temperature range of 10 °C to 80 °C.

First branch (i.e. the left hand portion of the curves as shown in Figure B.1 and Figure B.2,).

—   PE 80: (B.1)

—   PE 100 and PE 100-RC:

 

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure B.1 — Minimum required hydrostatic strength curves for PE 80

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure B.2 — Minimum required hydrostatic strength curves for PE 100 and PE 100-RC

Conformance with the reference lines is demonstrated by plotting the individual experimental results on the graph. At least 97,5 % of them shall lie on or above the following reference curves:

The endpoints of curves in the graphs (Figures B.1 to B.2) are given just as an example; the extrapolation time limit for a specific material (endpoints in the regression lines) has to be determined based on the method given in ISO 9080.

      1. Material characteristics

The material from which the components are manufactured shall conform to the requirements given in Table B.2 and Table B.3.

Table B.2 — Characteristics of the material in the form of granules

Characteristic

Requirements a

Test parameters

Test method

Compound density

≥ 930 kg/m3

(base polymer)

Test temperature

Number of test pieces b

23 °C

Shall conform to ISO 1183-1 or ISO 1183-2

ISO 1183‑1 or ISO 1183‑2

Oxidation
induction time (Thermal
stability)c

OIT ≥ 20 min

Test temperature

Sample weight

Test atmosphere

Number of test pieces b

210 °C

(15 ± 2) mg

Oxygen

3

ISO 11357‑6

Melt mass-flow rate (MFR)

(0,2 ≤ MFR ≤ 1,4) g/10 min

Maximum deviation of ±20 % of the nominated value d j

Test temperature

Loading mass

Time

Number of test pieces b

190 °C

5 kg

10 min

3

ISO 1133‑1

Volatile contente

≤ 350 mg/kg

Number of test pieces b

EN 12099

Water contente

≤ 300 mg/kg

(Equivalent to < 0,03 % by mass)

Number of test pieces b

ISO 15512

Carbon black
contentf

(2,0 to 2,5) % (by mass)

Number of test pieces b
Shall conform to ISO 6964 g

ISO 6964

Pigmenti or carbon black dispersionf

≤ Grade 3

Rating of dispersion A1, A2, A3, or B

Preparation of
test pieces

Number of test pieces b

Free h

Shall conform to ISO 18553

ISO 18553

Resistance to slow crack growth for PE 100-RC

Strain – Hardening testo

(SHT)

<Gp> ≥ 53 MPa

Test temperature

Thickness

Test speed and
number of test piecesb

80 °C

300 µm

Shall conform to ISO 18488

ISO 18488

Resistance to slow crack growth for
PE 100-RC

Cracked Round Bar testo

(CRB)

≥ 1,5 × 106 cycles
Value to be converted and normalised to a diameter of 14 mm and an initial crack length of 1,40 mm n

Test sample
 
 
 
 
 

Machined from compression moulded sheets
e > 16 mm

 

ISO 18489

 

 

Initial crack length

Test temperature

Type of test

1,5 mm

23 °C in air

14 mm

 

 

Diameter of test piece

1,40 mm

 

 

Δσ0* at a target
initial crack length
aini*

12,5 mm

 

 

Stress level Waveform/ frequency

Sinusoid/ 10 hz

 

 

Number of test pieces

Shall conform to ISO 18489

Resistance to slow crack growth for
PE 100-RC

Accelerated full notch creep test l m o

(AFNCT)

≥ 550 h at an interpolated reference tensile stress of 4 MPa m or

≥ 300 h at an interpolated reference tensile stress of 5 MPa m

Test temperature

Environment
Concentration

Test piece dimension

Failure mode

Number of test pieces

90 °C

Lauramine oxide k 2 %

 

10 mm square

Brittle

4

ISO 16770

a Conformity to these requirements shall be declared by the raw compound manufacturer.

b The number of test pieces given indicates the quantity required to establish a value for the characteristic described in the table.

The number of test pieces required for factory production control and process control should be listed in the manufacturer’s quality plan. For guidance see CEN/TS 12201‑7[13].

c Test may be carried out at 220 °C provided that a clear correlation has been established. In case of dispute the reference temperature shall be 210 °C. The test may be carried out on melt flow extrudate or pellet. In case of dispute the test shall be carried out on pellet. The sample thickness is free and not in accordance with ISO 11357‑6.

d Nominated value given by the compound manufacturer.

e Volatile or water content shall be measured. In case of dispute the requirement for water content shall be used. As an alternative method, ISO 760[14] may apply. The requirement applies to the compound manufacturerat the stage of manufacturing and to the compound user at the stage of processing (if the water content exceeds the limit, drying is required prior to use).

f Only for black compounds

g In case of dispute, method A ‘Electric Tube Furnace’ shall be used.

h In case of dispute the test pieces shall be prepared by the microtome method.

i Only for non-black materials

j Materials 0,15 < MFR < 0,20 g/10 min may be resulting from the maximum lower deviation of the nominated value to be not less than 0,15 g/10 min

k Lauramine oxide (CAS number 308062-28-4) is commercially available as Dehyton® PL 3. The dilution of the lauramine oxide in the product shall be taken into account when calculating the concentration of 2 wt%. For example, when Dehyton ® PL 3 is used, it is already diluted to 30 wt%. Therefore, 6,67 wt% of Dehyton® PL 3 is needed to obtain 2 wt% lauramine oxide.

l This requirement correlates to a test in accordance with ISO 16770, with a stress of 4 MPa at 80 °C in nonylphenol ethoxylate with no failure for a period of 8 760 h[15] which can be used as alternative. Nonylphenol ethoxylate (CAS number 9016- 45–9) with a trade name of Arkopal® 4 N100 is used for this test with a concentration for testing of 2 %. In case of dispute the AFNCT applies.

m AFNCT test stress levels should be chosen close to the nominal stress in order to avoid long testing times. Test stress levels of 3,8 MPa, 3,9 MPa, 4,2 MPa, 4,5 MPa for the 4 MPa reference stress, and 4,7 MPa, 4,9 MPa and 5,2 MPa and 5,5 MPa for the 5 MPa reference stress are recommended.

n For interpolation, CRB test stress levels should be chosen between 11,5 MPa and 13,5 MPa. Test stress levels of 11,5 MPa, 12,2 MPa, 12,8 MPa and 13,5 MPa are recommended. After the test the stress range is to be converted and normalised to a diameter of 14 mm and an initial crack length of 1,4 mm, in accordance with ISO 18489 Annex A.

o These tests are only performed on PE 100-RC materials.

Table B.3 — Characteristics of the material in the form of pipe

Characteristic

Requirements a

Test parameters

Test method

Resistance to rapid crack propagation c (Critical pressure, pc) (e ≥ 15 mm)
(RCP)

Arrest

Test temperature

Number of test pieces b
 
Dimension
 
Internal test pressure for:
PE 80
PE100 and PE100-RC
 
Test medium

0 °C

Shall conform to ISO 13477
 
dn: 250 mm SDR 11
 
 
 
8,0 bar
10,0 bar
 
Air

ISO 13477

Resistance to slow crack growth for PE 80 and PE 100

Notched pipe test f

(NPT)

No failure during the test period

Pipe dimension

Test temperature

dn: 110 mm SDR 11

80 °C

ISO 13479

Internal test pressure:
for PE 80
PE 100

8,0 bar
9,2 bar

Test period

500 h

Type of test

Water-in-water

Number of test pieces b

Shall conform to ISO 13479

Resistance to slow crack growth for PE 100-RC

Accelerated Notched pipe test d g

(ANPT)

No failure during the test period

Pipe dimension

Test temperature

dn: 110 mm SDR 11

80 °C

ISO 13479

Internal test pressure:
for PE 100-RC

9,2 bar

Test period

300 h

Type of test

Water-in-nonylphenol ethoxylate e

Number of test piecesb

Shall conform to ISO 13479

Determination of the failure mode in a tensile test on butt fusion weld h

Test to failure

Ductile – Pass

Brittle - Fail

Pipe dimension

Test temperature

Number of test pieces

110 mm SDR 11

23 °C

Shall conform to ISO 13953

ISO 13953

a Conformity to these requirements shall be proved by the compound manufacturer.

b The numbers of test pieces given indicate the numbers required to establish a value for the characteristic described in the table. The numbers of test pieces required for factory production control and process control should be listed in the manufacturer’s quality plan. For guidance, see Annex F.

c Only applicable for the conveyance of compressed gas in which case, PN is based on a C coefficient of 2.

d This requirement correlates to a test on 110 mm diameter SDR 11 PE 100-RC pipe in accordance with ISO 13479 at a pressure level of 9,2 bar, at 80 °C, water-in-water, with no failure in a test period of 8 760 h,[15] which can be used as an alternative test to meet this requirement. In case of dispute the ANPT applies, in accordance with ISO 13479:2022 Annex D.

e Nonylphenol ethoxylate (CAS number 9016–45–9) with a trade name of Arkopal N100 is used for this test with a concentration for testing of 2 %. Research is ongoing to find alternative stress cracking media to replace nonylphenol ethoxylate types providing accepted correlation has been developed.

f This test is not performed on PE 100-RC materials.

g The ANPT test is specifically for testing PE 100-RC materials.

h Preparation of samples in accordance with ISO 11414:2009, normal conditions at 23 °C.

      1. Type of pipe

The following two types of pipe are covered:

— PE pipe (outside diameter dn), including any identification;

— PE pipes with co-extruded layers on either or both the outside and/or inside of the pipe (total outside diameter dn) where all PE layers shall have the same MRS rating and the same PE designation (see Table B.1).

    1. General characteristics: Colour

Components made from PE should preferably be black using compound. Other colours shall be agreed upon between manufacturer and purchaser or in accordance with national regulations.

    1. Geometrical characteristics
      1. Dimensions of pipes
        1. Diameters and related tolerances

The mean outside diameter, dem, and the related tolerances shall conform to Table B.4, appropriate to the tolerance grade, whereby the average value of the measurements of the outside diameter made at a distance of dn and 0,1dn, from the end of the test pieces, shall be within the tolerance range for dem as specified in Table B.4.

For socket fusion and electrofusion joints where the peeling/scaping techniques is used to prepare the pipe end for fusion, pipes with tolerances of Grade A given in ISO 11922‑1 shall be used.

For socket fusion joints where the peeling technique is not used, pipes with tolerances of Grade B given in ISO 11922‑1 shall be used.

        1. Out-of-roundness

The out-of-roundness for straight lengths shall conform to Table B.4 when measured at the point of manufacture. If other values for the out-of-roundness than those given in Table B.4 are necessary, they shall be agreed upon between manufacturer and purchaser.

For coiled pipes, the maximum out-of-roundness shall be specified by agreement between manufacturer and purchaser.

Table B.4 — Mean outside diameters, related tolerances, and out-of-roundness of pipes

Dimensions in millimetres

Nominal outside diameter

Mean outside diameter

Tolerance of
outside diameter

Out-of-roundnessb
(straight pipes)

dn

dem

Grade Aa

Grade Ba

Grade Na

 

min.

max.

16

16,0

+0,3

+0,3

1,2

20

20,0

+0,3

+0,3

1,2

25

25,0

+0,3

+0,3

1,2

32

32,0

+0,3

+0,3

1,3

40

40,0

+0,4

+0,4d

1,4

50

50,0

+0,5

+0,4d

1,4

63

63,0

+0,6

+0,4

1,5

75

75,0

+0,7

+0,5

1,6

90

90,0

+0,9

+0,6

1,8

110

110,0

+1,0

+0,7

2,2

125

125,0

+1,2

+0,8

2,5

140

140,0

+1,3

+0,9

2,8

160

160,0

+1,5

+1,0

3,2

180

180,0

+1,7

+1,1

3,6

200

200,0

+1,8

+1,2

4,0

225

225,0

+2,1

+1,4

4,5

250

250,0

+2,3

+1,5

5,0

280

280,0

+2,6

+1,7

9,8

315

315,0

+2,9

+1,9

11,1

355

355,0

+3,2

+2,2

12,5

400

400,0

+3,6

+2,4

14,0

450

450,0

+4,1

+2,7

15,8d

500

500,0

+4,5

+3,0

17,5

560

560,0

+5,0

+3,4

19,6

630

630,0

+5,7

+3,8

22,1

710

710,0

+6,4

+4,3

24,9

800

800,0

+7,2

+4,8

28,0

900

900,0

+8,1

+5,4

31,5

1 000

1 000,0

+9,0

+6,0

35,0

1 200

1 200,0

+10,8c

+7,2

42,0

1 400

1 400,0

+12,6c

+8,4

49,0

1 600

1 600,0

+14,4c

-

56,0

1 800

1 800,0

+16,2c

-

63,0

2 000

2 000,0

+18,0c

-

70,0

2 250

2 250,0

+20,3c

-

-

2 300 e

2 300,0

+20,7c

-

-

2 500

2 500,0

+22,5c

-

-

2 720 e

2 720,0

+20,3c

-

-

2 800

2 800,0

+24,5c

-

-

2 830 e

2 830,0

+25,5c

3 000

3 000,0

+27,0c

-

-

3 260 e

3 260,0

+29,4c

3 500 e

3 500,0

+31,5c

a In accordance with ISO 11922‑1:2018.

b For straight pipes, Grade N for: dn ≤ 75 mm (0,008dn + 1,0 mm); 90 mm ≤ dn ≤ 250 mm (0,02dn); dn > 250 mm (0,035dn).

  Tolerances of the outside diameter are rounded up to the next 0,1 mm.

c Tolerance calculated as 0,009dem and do not conform to Grade A in ISO 11922‑1:2018.

d Not in accordance with ISO 11922‑1:2018.

e Not in accordance with ISO 4065:2018. Those dimensions are required to match with other piping system

        1. Wall thicknesses and related tolerances

The wall thickness, e, and the related tolerances shall conform to Table B.5.

Table B.5 — Wall thicknesses and related tolerances<Tbl_--></Tbl_-->

Dimensions in millimetres

Nominal outside diameter

Wall thickness, e, and related tolerancesb

Pipe series S and standard dimension ratio, SDR

S 20
SDR 41

S 16
SDR 33

S 12,5
SDR 26

S 10
SDR 21

S 8
SDR 17

S 6,3
SDR 13,6

S 5
SDR 11

S 4
SDR 9

S 3,2
SDR 7,4

S 2,5
SDR 6

dn

en

a

en

a

en

a

en

a

en

a

en

a

en

a

en

a

en

a

en

a

16

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2,0

+0,3

2,3

+0,4

3,0

+0,4

20

-

-

-

-

-

-

-

-

-

-

-

-

2,0

+0,3

2,3

+0,4

3,0

+0,4

3,4

+0,5

25

-

-

-

-

-

-

-

-

-

-

2,0

+0,3

2,3

+0,4

3,0

+0,4

3,5

+0,5

4,2

+0,6

32

-

-

-

-

-

-

-

-

2,0

+0,3

2,4

+0,4

3,0

+0,4

3,6

+0,5

4,4

+0,6

5,4

+0,7

40

-

-

-

-

-

-

2,0

+0,3

2,4

+0,4

3,0

+0,5

3,7

+0,5

4,5

+0,6

5,5

+0,7

6,7

+0,8

50

-

-

-

-

2,0

+0,3

2,4

+0,4

3,0

+0,4

3,7

+0,5

4,6

+0,6

5,6

+0,7

6,9

+0,8

8,3

+1,0

63

-

-

-

-

2,5

+0,4

3,0

+0,4

3,8

+0,5

4,7

+0,6

5,8

+0,7

7,1

+0,9

8,6

+1,0

10,5

+1,2

75

-

-

2,3

+0,4

2,9

+0,4

3,6

+0,5

4,5

+0,6

5,6

+0,7

6,8

+0,8

8,4

+1,0

10,3

+1,2

12,5

+1,4

90

2,2

+0,4

2,8

+0,4

3,5

+0,5

4,3

+0,6

5,4

+0,7

6,7

+0,8

8,2

+1,0

10,1

+1,2

12,3

+1,4

15,0

+1,6

110

2,7

+0,4

3,4

+0,5

4,2

+ 0,6

5,3

+0,7

6,6

+0,8

8,1

+1,0

10,0

+1,1

12,3

+1,4

15,1

+1,7

18,3

+2,0

125

3,1

+0,5

3,9

+0,5

4,8

+0,6

6,0

+0,7

7,4

+0,9

9,2

+1,1

11,4

+1,3

14,0

+1,6

17,1

+1,9

20,8

+2,2

140

3,5

+0,5

4,3

+0,6

5,4

+0,7

6,7

+0,8

8,3

+1,0

10,3

+1,2

12,7

+1,4

15,7

+1,7

19,2

+2,1

23,3

+2,5

160

4,0

+0,5

4,9

+0,6

6,2

+0,8

7,7

+0,9

9,5

+1,1

11,8

+1,3

14,6

+1,6

17,9

+1,9

21,9

+2,3

26,6

+2,8

180

4,4

+0,6

5,5

+0,7

6,9

+0,8

8,6

+1,0

10,7

+1,2

13,3

+1,5

16,4

+1,8

20,1

+2,2

24,6

+2,6

29,9

+3,1

200

4,9

+0,6

6,2

+0,8

7,7

+0,9

9,6

+1,1

11,9

+1,3

14,7

+1,6

18,2

+2,0

22,4

+2,4

27,4

+2,9

33,2

+3,5

225

5,5

+0,7

6,9

+0,8

8,6

+1,0

10,8

+1,2

13,4

+1,5

16,6

+1,8

20,5

+2,2

25,2

+2,7

30,8

+3,2

37,4

+3,9

250

6,2

+0,8

7,7

+0,9

9,6

+1,1

11,9

+1,3

14,8

+1,6

18,4

+2,0

22,7

+2,4

27,9

+2,9

34,2

+3,6

41,5

+4,3

280

6,9

+0,8

8,6

+1,0

10,7

+1,2

13,4

+1,5

16,6

+1,8

20,6

+2,2

25,4

+2,7

31,3

+3,3

38,3

+4,0

46,5

+4,7

315

7,7

+0,9

9,7

+1,1

12,1

+1,4

15,0

+1,6

18,7

+2,0

23,2

+2,5

28,6

+3,0

35,2

+3,7

43,1

+4,5

52,3

+5,4

355

8,7

+0,9

10,9

+1,2

13,6

+1,5

16,9

+1,8

21,1

+2,3

26,1

+2,8

32,2

+3,4

39,7

+4,1

48,5

+5,0

59,0

+6,0

400

9,8

+1,1

12,3

+1,4

15,3

+1,7

19,1

+2,1

23,7

+2,5

29,4

+3,1

36,3

+3,8

44,7

+4,6

54,7

+5,6

66,4

+6,8

450

11,0

+1,2

13,8

+1,5

17,2

+1,9

21,5

+2,3

26,7

+2,8

33,1

+3,5

40,9

+4,2

50,3

+5,2

61,5

+6,3

74,7

+7,6

500

12,3

+1,4

15,3

+1,7

19,1

+2,1

23,9

+2,5

29,7

+3,1

36,8

+3,8

45,4

+4,7

55,8

+5,7

68,3

+7,0

83

+8,4

560

13,7

+1,5

17,2

+1,9

21,4

+2,3

26,7

+2,8

33,2

+3,5

41,2

+4,3

50,8

+5,2

62,5

+6,4

76,5

+7,8

93

+9,4

630

15,4

+1,7

19,3

+2,1

24,1

+2,6

30,0

+3,1

37,4

+3,9

46,3

+4,8

57,2

+5,9

70,3

+7,2

86,1

+8,8

104,6

+10,6

710

17,4

+1,9

21,8

+2,3

27,2

+2,9

33,9

+3,5

42,1

+4,4

52,2

+5,4

64,5

+6,6

79,3

+8,1

97

+9,8

117,9

+11,9

800

19,6

+2,1

24,5

+2,6

30,6

+3,2

38,1

+4,0

47,4

+4,9

58,8

+6,0

72,6

+7,4

89,3

+9,1

109,3

+11,1

132,9

+13,4

900

22,0

+2,3

27,6

+2,9

34,4

+3,6

42,9

+4,4

53,3

+5,5

66,1

+6,9

81,7

+8,3

100,5

+10,2

122,9

+12,4

149,5

+15,1

1 000

24,5

+2,6

30,6

+3,2

38,2

+4,0

47,7

+4,9

59,3

+6,1

73,5

+6,4

90,8

+9,2

111,6

+11,3

136,6

+13,8

166,1

+16,8

1 200

29,4

+3,1

36,7

+3,8

45,9

+4,7

57,2

+5,9

71,1

+7,3

88,2

+9,0

108,9

+11,0

133,9

+13,5

163,9

+16,5

-

-

1 400

34,3

+3,6

42,9

+4,4

53,5

+5,5

66,7

+6,8

83,0

+8,4

102,8

+10,5

127,0

+12,8

156,3

+15,8

-

-

-

-

1 600

39,2

+4,1

49,0

+5,0

61,2

+6,3

76,2

+7,8

94,8

+9,6

117,5

+12,0

145,2

+14,7

-

-

-

-

-

-

1 800

44,0

+4,5

55,1

+5,6

68,8

+6,9

85,8

+8,7

106,6

+10,8

132,2

+13,4

163,3

+16,5

-

-

-

-

-

-

2 000

48,9

+4,9

61,2

+6,2

76,4

+7,7

95,3

+9,7

118,5

+12,0

146,9

+14,8

-

-

-

-

-

-

-

-

2 250

55,0

+5,6

68,9

+7,0

86,0

+8,7

107,2

+10,9

133,3

+13,5

165,3

+16,7

-

-

-

-

-

-

-

-

2 300 c

56,3

+5,8

70,4

+7,2

87,9

+8,9

109,6

+11,1

136,2

+13,8

-

-

-

-

-

-

-

-

-

-

2 500

61,2

+6,3

76,5

+7,8

95,5

+9,6

119,1

+12,1

148,0

+14,9

-

-

-

-

-

-

-

-

-

-

2 720 c

66,5

+6,8

83,2

+8,5

103,9

+10,5

129,6

+13,1

161,1

+16,3

-

-

-

-

-

-

-

-

-

-

2 800

68,5

+7,0

85,7

+8,7

107,0

+10,8

133,4

+13,5

165,9

+16,7

-

-

-

-

-

-

-

-

-

-

2 830 c

69,2

+7,1

86,6

+8,8

108,2

+11,0

134,8

+13,6

167,6

+16,9

-

-

-

-

-

-

-

-

-

-

3 000

73,4

+7,5

91,8

+9,3

114,6

+11,6

142,9

+14,4

-

-

-

-

-

-

-

-

-

-

-

-

3 260 c

79,7

+8,1

99,7

+10,1

124,6

+12,6

155,3

+15,7

-

-

-

-

-

-

-

-

-

-

-

-

3 500 c

85,6

+8,7

107,1

+10,9

133,7

+13,5

166,7

+16,8

-

-

-

-

-

-

-

-

-

-

-

-

a Tolerance of the wall thickness: 0,1e + 0,1 mm, rounded up to the next 0,1 mm.

b All dimensions correspond to ISO 4065 except those mentioned under footnote c

c Not in accordance with ISO 4065:2018. Those dimensions are required to match with other piping systems

      1. Dimensions of fittings
        1. General

Annex B is applicable for the following types of fittings:

— butt fusion fittings;

— socket fusion fittings;

— electrofusion fittings;

— flange adaptors and loose backing flanges;

— mechanical fittings.

        1. Butt fusion fittings
          1. Outside diameters

The mean outside diameter, dem, of the spigot end (see Figure B.4) over the length, Lb2 (see Table B.6) shall conform to B.3.1.1, except between the plane of the entrance face and the plane parallel to it, located at a distance not greater than 0,01dn + 1 mm where a reduction of the outside diameter is permissible (e.g. for circumferential reversion).

          1. Out-of-roundness

The out-of-roundness of the spigot end (see Figure B.4) over the length, Lb2 (see Table B.6) shall conform to B.3.1.2.

          1. Wall thickness of the spigot end

The wall thickness, e, of the spigot end (see Figure B.4) over the length, Lb1, (see Table B.6) shall conform to B.3.1.3 except between the plane of the entrance face and the plane parallel to it, located at a distance not greater than 0,01dn + 1 mm where a thickness reduction is permissible (e.g. for chamfered edge).

Key

Lb1

cut-back length of fusion end piece – it comprises the initial depth of the spigot end necessary for butt fusion or reweld and can be obtained by joining a length of pipe to the spigot end of the fitting provided that the wall thickness of the pipe is equal to E1 for its entire length.

Lb2

outside tubular length of fusion end piece – it comprises the initial length of the fusion end piece and shall allow the following (in any combination): the use of clamps required in the case of butt fusion; assembly with an electrofusion fitting; assembly with a socket fusion fitting; the use of a mechanical scraper.

Figure B.3 — Dimensions of spigot end for butt fusion fittings

Table B.6 — Dimensions of spigot ends for butt fusion fittings

Dimensions in millimetres

Nominal outside diameter

dn

Inside tubular length

Lb1a

min.

Outside tubular length

Lb2a

min.

16

4

10

20

4

10

25

4

10

32

5

10

40

5

10

50

5

12

63

6

12

75

6

12

90

7

12

110

8

12

125

8

15

140

9

15

160

9

20

180

10

20

200

11

20

225

12

25

250

13

25

280

14

30

315

15

30

355

16

30

400

18

30

450

20

35

500

20

35

560

20

40

630

20

40

710

20

40

800

20

50

900

20

50

1 000

20

60

1 200

20

60

1 400

20

70

1 600

20

70

1 800

- b

- b

2 000

- b

- b

NOTE The minimum tubular lengths given in this table are too short for electrofusion and socket joints. For these jointing methods, a tubular length (Lb2/L2) conforming to the depth of penetration according to Table B.7, B.8 and B.9 shall be fulfilled.

a For bends, a reduction of the tubular length(s) is permissible.

b To be agreed between parties

The minimum tubular lengths given in table B.6 are too short for electrofusion joints, see clause B.3.2.4.1.

          1. Wall thickness of fitting body

The wall thickness, e, of the fitting body shall be at least equal to the minimum wall thickness of the corresponding pipe (see B.3.1.3).

          1. Other dimensions

Other dimensions of butt fusion fittings shall be specified by the manufacturer.

        1. Socket fusion fittings
          1. Types of socket fusion fittings

Socket fusion fittings (see Figure B.5) shall be classified into the following two types.

Type A: Fittings intended to be used with pipes having dimensions as given in B.3.1 where no external machining of the pipe is required.

Type B: Fittings intended to be used with pipes having dimensions as given in B.3.1 where machining of the outside surface of the pipe is necessary in accordance with the instructions of the manufacturer.

Socket fitting PN rating is declared by the manufacturer and based on own technical documentation.

          1. Diameters and lengths of sockets

The nominal diameter(s), dn, of a socket fusion fitting shall correspond to, and be designated by, the nominal outside diameter(s) of the pipe(s) for which it is designed. B.3.2.5.1

The diameters and lengths of sockets for socket fusion fittings of type A shall conform to Table B.7. For socket fusion fittings of type B, the diameters and lengths of sockets shall conform to Table B.8.

Key

D1

inside diameter of the socket mouth which comprises the mean diameter of the circle at the inner section of the extension of the socket with the plane of the socket mouth

D2

mean inside diameter of the socket root which comprises the mean diameter of the circle in a plane parallel to the plane of the socket mouth and separated from it by a distance of L1 min

D3

minimum diameter of the flow channel (bore) through the body of a fitting

L1 min

minimum socket length which comprises the distance from the socket mouth to the shoulder

L2 min

minimum insertion length which comprises the depth of penetration of the heated pipe end into the socket;

R

maximum radius at socket root

Figure B.4 — Diameters and lengths of socket fusion fittings

Table B.7 — Diameters and lengths of sockets for socket fusion fittings of type A

Dimensions in millimetres

Nominal
outside
diameter of pipe

dn

Mean outside diameter of pipe

Mean inside diameter

Out-of-roundness

Bore

Radius at socket root

Socket length

Penetration
of pipe into socket

Socket mouth

Socket root

dem

D1

D2

D3a

R

L1b

L2c

min.

min.

 

min.

 

max.

min.

max.

min.

min.

16

16,0

15,2

+0,3

15,1

+0,3

0,4

9,0

2,5

13,0

9,5

20

20,0

19,2

+0,3

19,0

+0,3

0,4

13,0

2,5

14,5

11,0

25

25,0

24,2

+0,3

23,9

+0,4

0,4

18,0

2,5

16,0

12,5

32

32,0

31,1

+0,4

30,9

+0,4

0,5

25,0

3,0

18,0

14,5

40

40,0

39,0

+0,4

38,8

+0,4

0,5

31,0

3,0

20,5

17,0

50

50,0

48,9

+0,5

48,7

+0,5

0,6

39,0

3,0

23,5

20,0

63

63,0

61,9

+0,6

61,6

+0,5

0,6

49,0

4,0

27,5

24,0

75

75,0

73,4

+1,3

72,6

+1,0

1,0

59,0

4,0

30,0

26,0

90

90,0

88,2

+1,5

87,7

+1,0

1,0

69,0

4,0

33,0

29,0

110

110,0

108,0

+1,7

107,0

+1,2

1,0

85,0

4,0

37,0

32,5

125

125,0

122,4

+2,2

121,5

+1,5

1,2

99,7

4,0

40,0

35,0

a Only applicable, if a shoulder exists.

b Length of the socket (rounded), d16 to d63: L1 min = 0,3dn + 8,5 mm; d75 to 110: L1 min = 0,2dn + 15 mm.

c Penetration of pipe into socket, d16 to d63; L2 min = L1 min – 3,5 mm; d75 to d110; No formula available.

Table B.8 — Diameters and lengths of sockets for socket fusion fittings of type B

Dimensions in millimetres

Nominal outside diameter of pipe

Mean outside diameter of pipe

Mean inside diameter

Out-of-roundness

Bore

Radius at socket root

Socket length

Penetration of pipe into socket

Socket mouth

Socket root

dn

dem

D1

D2

D3a

R

L1b

L2c

 

min.

max.

min.

 

min.

 

max.

min.

max.

min.

min.

16

15,8

16,0

15,2

+0,3

15,1

+0,3

0,4

11,0

2,5

13,0

9,5

20

19,8

20,0

19,2

+0,3

19,0

+0,3

0,4

13,0

2,5

14,5

11,0

25

24,8

25,0

24,2

+0,3

23,9

+0,4

0,4

18,0

2,5

16,0

12,5

32

31,8

32,0

31,1

+0,4

30,9

+0,4

0,5

25,0

3,0

18,0

14,5

40

39,8

40,0

39,0

+0,4

38,8

+0,4

0,5

31,0

3,0

20,5

17,0

50

49,8

50,0

48,9

+0,5

48,7

+0,5

0,6

39,0

3,0

23,5

20,0

63

62,7

63,0

61,9

+0,6

61,6

+0,5

0,6

49,0

4,0

27,5

24,0

75

74,7

75,0

73,7

+0,5

73,4

+0,5

1,0

58,0

4,0

31,0

27,5

90

89,7

90,0

88,6

+0,6

88,2

+0,6

1,0

69,0

4,0

35,5

32,0

110

109,6

110,0

108,4

+0,6

108,0

+0,6

1,0

85,0

4,0

41,5

38,0

125

124,6

125,0

122,7

+1,2

122,3

+1,2

1,2

99,7

4,0

46,5

43,0

a Only applicable if a shoulder exists.

b Length of the socket (rounded), L1 min = 0,3dn + 8,5 min.

c Penetration of pipe into socket, L2 min = L1 min – 3,5 mm.

          1. Other dimensions

Other dimensions of socket fusion fittings shall be specified by the manufacturer.

        1. Electrofusion fittings
          1. Dimensions of sockets of electrofusion fittings

The dimensions of sockets of electrofusion fittings (see Figure B.6) shall conform to Table B.9.

The mean inside diameter of the fitting in the middle of the fusion zone, D1, shown in Figure B.6 shall not be less than dn. The manufacturer shall declare the actual maximum and minimum values of D1 and L1 for determining suitability for clamping and joint assembly.

In case of using spigot end fittings, the outside tubular length of the fusion end shall allow the assembly with an electrofusion fitting conforming to the depth of penetration according to Table B.9 is necessary.

Key

D1

meaiinside diameter in the fusion zone measured in a plane parallel to the plane of the mouth at a distance of L3 + 0,5L2 from that face

D2

bore, which is the minimum diameter of the flow channel through the body of the fitting

L1

depth of penetration of the pipe or male end of a spigot end fitting. In case of a coupling without stop, it is not greater than half the total length of the fitting

L2

heated length within a socket as declared by the manufacturer, to be the nominal length of the fusion zone

L3

distance between the mouth of the fitting and the start of the fusion zone as declared by the manufacturer to be the nominal unheated entrance length of the fitting (L3 ≥ 5 mm)

Figure B.5 — Dimensions of electrofusion socket fittings

Table B.9 — Dimensions of sockets of electrofusion fittings

Dimensions in millimetres

Nominal diameter of fitting

Depth of penetration

Length of the fusion zone

dn

L1

L2

 

min.

max.

min.

16

20

41

10

20

20

41

10

25

20

41

10

32

20

44

10

40

20

49

10

50

20

55

10

63

23

63

11

75

25

70

12

90

28

79

13

110

32

82

15

125

35

87

16

140

38

92

18

160

42

98

20

180

46

105

21

200

50

112

23

225

55

120

26

250

73

129

33

280

81

139

35

315

89

150

39

355

99

164

42

400

110

179

47

450

122

195

51

500

135

212

56

560

147

235

61

630

161

255

67

710

177

280

74

800

193

300

82

900

198

305

83

1 000

208

315

83

1 200

213

320

96

1 400

218

325

96

1 600

225

330

110

1 800

240

335

120

2 000

250

340

125

2 250

260

345

130

          1. Dimensions of electrofusion saddle fittings

The manufacturer shall specify the overall dimensions of the electrofusion saddle fitting (see Figure B.7) in a technical file. These dimensions shall include the maximum height of the saddle, H, and for tapping tees, the height of the service pipe, h.

Key

H

height of the saddle which comprises the distance from the top of the main to the top of the tapping tee or saddle

H

height of the service pipe which comprises the distance from the axis of the main pipe to the axis of the service pipe

L

width of the tapping tee which comprises the distance between the axis of the pipe and the plane of the mouth of the service tee

Figure B.6 — Dimensions of electrofusion saddle fittings

          1. Other dimensions

Other dimensions of electrofusion fittings shall be specified by the manufacturer.

        1. Flange adaptors and loose backing flanges
          1. Dimensions of flange adaptors for butt fusion

The values for D4 shall be applied in order to maximise the sealing contact surface and to increase the surface under the backing ring in order to reduce the surface compression stress. The D4 values given in Table B.10 are optimized to be as close as possible to the bolt circle.

Height of the flange adaptor (hf) has been added to the dimensions in Table B.10 and those are the min. dimensions of this flange adaptor for butt fusion in combination with the loose backing rings.

Modified designs of flange adaptors in combination with adopted backing rings are offered to the market as well, here the producer needs to ensure the functionality and safety. In case other materials (like glassfibre reinforced PP in combination with PE) are used for the loose backing rings, the thickness of the backing ring might be much higher.

The dimensions of flange adaptors for butt fusion (see Figure B.8) shall conform to Table B.10.

Key

dn

nominal (outside) diameter of connecting pipe and nominal (inside) diameter of the socket

D

outside diameter of loose backing flange

D1

bolt hole diameter

D2

inside diameter of loose backing flange

D3

pitch circle diameter

D4

outside diameter of flange adapter head

D5

outside diameter of flange adapter shank

hf

height of the flange adaptor shoulder

rf

radius of shoulder of flange adapter

r

radius of flange inside

Figure B.7 — Dimensions of flange adaptors for butt fusion

Table B.10 — Dimensions of flange adaptors for butt fusion

Dimensions in millimetres

Nominal outside
diameter of pipe
and spigot

Outside diameter of
flange adapter head

Outside
diameter of
flange adapter
shank

Height of the flange adaptor
shoulder

Radius of
shoulder of
flange adapter

dn

D4 min

D4 min

D4 min

D5 min

min.

min.

min.

rf

PN10

PN16

PN25

hf PN10

hf PN16

hf PN25

(+0,5 / −0,5)

16

40

22

6

3

20

45

27

7

3

25

58

33

9

3

32

68

40

10

3

40

78

50

11

3

50

88

61

12

3

63

102

75

14

14

17

4

75

122

89

16

16

20

4

90

138

105

17

17

21

4

110

158

162

125

18

18

22

4

125

158

162

132

18

25

30

4

140

188

188

155

18

25

30

4

160

212

218

175

18

25

30

4

180

212

218

183

20

30

30

4

200

268

278

232

24

32

39

4

225

268

278

235

24

32

39

4

250

320

335

285

25

35

50

4

280

320

335

291

25

35

50

4

315

370

378

395

335

25

35

57

4

355

430

438

450

373

30

40

63

6

400

482

490

505

427

33

46

70

6

450

585

610

615

514

46

60

83

6

500

585

610

615

530

46

60

86

6

560

685

725

 

615

50

60

90

6

630

695

725

 

642

50

60

 

6

710

800

800

 

737

50

65

 

8

800

905

905

 

840

65

 

 

8

900

1 005

1 005

 

944

70

 

 

8

1 000

1 110

1 115

 

1 047

75

 

 

8

1 200

1 330

1 330

 

1 245

90

 

 

8

1 400

1 540

1 540

 

1 450

100

 

 

8

1 600

1 760

1 760

 

1 650

110

 

 

10

1 800

1 960

 

 

1 860

125

 

 

10

2 000

2 170

 

 

2 070

140

 

 

10

2 250

2 435

 

 

2 320

160

 

 

10

2 300

2 560

 

 

2 370

165

 

 

10

2 500

2 730

 

 

2 550

175

 

 

10

2 720

2 990

 

 

2 800

190

 

 

10

2 800

3 002

 

 

2 862

200

 

 

10

2 830

3 080

 

 

2 880

200

 

 

15

3 000

3 220

 

 

3 080

230

 

 

15

3 260

3 620

 

 

3 320

250

 

 

15

3 500

3 937

 

 

3 590

250

 

 

15

The dimensions of loose backing flanges for use with flange adaptors for butt fusion (see Figure B.9) shall conform for PN10 to Table B.11, for PN16 to Table B.12, for PN25 to Table B.13

Key

dn

nominal (outside) diameter of connecting pipe and nominal (inside) diameter of the socket

D

outside diameter of loose backing flange

D1

bolt hole diameter

D2

inside diameter of loose backing flange

D3

pitch circle diameter

D4

outside diameter of flange adapter head

D5

outside diameter of flange adapter shank

hf

height of the flange adaptor shoulder

rf

radius of shoulder of flange adapter

r

radius of flange inside

Figure B.8 — Dimensions of loose backing flanges for use with flange adaptors for butt fusion

Table B.11 — Dimensions of loose backing flanges for use with flange adaptors for butt fusion –PN10

Dimensions in millimetres

Nominal outside diameter
of pipe

dn

Designation of mating backing flange

DN

Outside diameter

Inside diameter

Radius of Flange inside

Pitch circle diameter

Bolts

Bolt hole diameter

Number

Screw threada

Dmin

D2

r

D3

D1

n

 

16

10

Values from PN25 Table B.13 shall be used

 

 

 

 

 

 

20

15

25

20

32

25

40

32

50

40

63

50

75

65

90

80

110

100

Values from PN16 Table B.12 shall be used

 

 

 

 

 

 

125

100

140

125

160

150

180

150

200

200

340

235

3

295

22

8

M20

225

200

340

238

3

295

22

8

M20

250

250

395

288

3

350

22

12

M20

280

250

395

294

3

350

22

12

M20

315

300

445

338

3

400

22

12

M20

355

350

505

376

4

460

22

16

M20

400

400

565

430

4

515

26

16

M24

450

500

670

517

4

620

26

20

M24

500

500

670

533

4

620

26

20

M24

560

600

780

618

4

725

30

20

M27

630

600

780

645

4

725

30

20

M27

710

700

895

740

5

840

30

24

M27

800

800

1 015

843

5

950

33

24

M30

900

900

1 115

947

5

1 050

33

28

M30

1 000

1 000

1 230

1 050

5

1 160

36

28

M33

1 200

1 200

1 455

1 260

6

1 380

39

32

M36

1 400

1 400

1 675

1 470

7

1 590

42

36

M39

1 600

1 600

1 915

1 670

7

1 820

48

40

M45

1 800

1 800

2 115

1 875

7

2 020

48

44

M45

2 000

2 000

2 325

2 085

7

2 230

48

48

M45

2 250

2 250b

2 610

2 335

7

2 495

56

52

M52

2 300

2 300

2 760

2 390

7

2 650

56

56

M52

2 500

2 500b

2 960

2 570

7

2 804

56

60

M52

2 720

2 720

3 180

2 820

7

3 070

56

64

M52

2 800

2 800

3 180

2 882

7

3 070

56

64

M52

2 830

2 830

3 285

2 910

7

3 170

62

68

M56

3 000

3 000

3 405

3 110

7

3 290

62

68

M56

3 260

3 260

3 905

3 340

7

3 702

82

76

M76

3 500

3 500

4 248

3 610

7

4 019

82

80

M76

a Metric screw thread sizes in millimetres conforming to ISO 261

b These dimensions are not specified in EN 1092-1[16].

c To be determined by the purchaser

Table B.12 — Dimensions of loose backing flanges for use with flange adaptors for butt fusion – PN16

Dimensions in millimetres

Nominal
outside
diameter
of pipe

Designation of mating backing flange

Outside diameter

Inside
diameter

Radius of Flange
inside

Pitch circle diameter

Bolts

Bolt hole diameter

Number

Screw threada

dn

DN

Dmin

D2

r

D3

D1

n

 

16

10

Values from PN25 Table B.13 shall be used

20

15

25

20

32

25

40

32

50

40

63

50

75

65

90

80

110

100

220

128

3

180

18

8

M16

125

100

220

135

3

180

18

8

M16

140

125

250

158

3

210

18

8

M16

160

150

285

178

3

240

22

8

M20

180

150

285

188

3

240

22

8

M20

200

200

340

235

3

295

22

12

M20

225

200

340

238

3

295

22

12

M20

250

250

405

288

3

355

26

12

M24

280

250

405

294

3

355

26

12

M24

315

300

460

338

3

410

26

12

M24

355

350

520

376

4

470

26

16

M24

400

400

580

430

4

525

30

16

M27

450

500

715

517

4

650

33

20

M30

500

500

715

533

4

650

33

20

M30

560

600

840

618

4

770

36

20

M33

630

600

840

645

4

770

36

20

M33

710

700

910

740

5

840

36

24

M33

800

800

1 025

843

5

950

39

24

M36

900

900

1 125

947

5

1 050

39

28

M36

1 000

1 000

1 255

1 050

5

1 170

42

28

M39

1 200

1 200

1 485

1 260

6

1 390

48

32

M45

1 400

1 400

1 685

1 470

7

1 590

48

36

M45

1 600

1 600

1 930

1 670

7

1 820

56

40

M52

a Metric screw thread sizes in millimetres conforming to ISO 261

b To be determined by the purchaser

Table B.13 — Dimensions of loose backing flanges for use with flange adaptors for butt fusion – PN25

Dimensions in millimetres

Nominal outside diameter of pipe

Designation of mating backing flange

Outside diameter

Inside
diameter

Radius of Flange
inside

Pitch circle diameter

Bolts

Bolt hole diameter

Number

Screw threadb

dn

DN

Dmin

D2

r

D3

D1

n

 

16

10

90

23

3

60

14

4

M12

20

15

95

28

3

65

14

4

M12

25

20

105

34

3

75

14

4

M12

32

25

115

42

3

85

14

4

M12

40

32

140

51

3

100

18

4

M16

50

40

150

62

3

110

18

4

M16

63

50

165

78

3

125

18

4

M16

75

65

185

92

3

145

18

4

M16

90

80

200

108

3

160

18

8

M16

110

100

235

128

3

190

22

8

M20

125

100

235

135

3

190

22

8

M20

140

125

270

158

3

220

26

8

M24

160

150

300

178

3

250

26

8

M24

180

150

300

188

3

250

26

8

M24

200

200

360

235

3

310

26

12

M24

225

200

360

238

3

310

26

12

M24

250

250

425

288

3

370

30

12

M27

280

250

425

294

3

370

30

12

M27

315

300

485

338

3

430

30

16

M27

355

350

555

376

4

490

33

16

M30

400

400

620

430

4

550

36

16

M33

450

500

730

517

4

660

36

20

M33

500

500

730

533

4

660

36

20

M33

          1. Dimensions of flange adaptors for socket fusion

The dimensions of flange adaptors for socket fusion (see Figure B.10) shall conform to Table B.14.

Key

Df1

outside diameter of chamfer on shoulder

Df2

outside diameter of flange adaptor

rf

radius of chamfer on shoulder

Figure B.9 — Dimensions of flange adaptors for socket fusion

Table B.14 — Dimensions of flange adaptors for socket fusion

Dimensions in millimetres

Nominal outside diameter of the corresponding pipe

Outside diameter of chamfer on shoulder

Outside diameter of flange adaptor

Radius of chamfer on shoulder

Height of the flange adaptor shoulder

dn

Df1

Df2

rf

hf

16

22

40

3

6

20

27

45

3

6

25

33

58

3

7

32

41

68

3

7

40

50

78

3

8

50

61

88

3

8

63

76

102

4

9

75

90

122

4

10

90

108

138

4

11

110

131

158

4

12

          1. Dimensions of loose backing flanges for use with flange adaptors for socket fusion

The dimensions of loose backing flanges for use with flange adaptors for socket fusion (see Figure B.11) shall conform to Table B.15.

Key

df1

inside diameter of flange

df2

pitch circle diameter of bolt holes

df3

outside diameter of flange

df4

diameter of bolt holes

r

radius of flange

h

thickness of backing flange

NOTE The thickness, h, of the loose backing flange is dependent on the material used.

Figure B.10 — Dimensions of loose backing flanges for use with flange adaptors for socket fusion

Table B.15 — Dimensions of loose backing flanges for use with flange adaptors for socket fusion

Dimensions in millimetres

Nominal
outside diameter
of the corresponding pipe

Nominal size of flange

Inside diameter of flange

Pitch
circle
diameter of bolt holes

Outside diameter of flange

Diameter of bolt holes

Radius
of flange

Number of bolt holes

Metric thread of bolt

dn

DN

df1

df2

df3

df4

r

n

 

 

 

 

 

min.

 

 

 

 

16

10

23

60

90

14

3

4

M12

20

15

28

65

95

14

3

4

M12

25

20

34

75

105

14

3

4

M12

32

25

42

85

115

14

3

4

M12

40

32

51

100

140

18

3

4

M16

50

40

62

110

150

18

3

4

M16

63

50

78

125

165

18

3

4

M16

75

65

92

145

185

18

3

4

M16

90

80

110

160

200

18

3

8

M16

110

100

133

180

220

18

3

8

M16

        1. Prefabricated fittings

Where the description and dimensions of fittings of this type is required, ISO 4427-3:2019 Annex B applies.

NOTE 1 At the time of this draft a new version of ISO 4427-3 is ongoing based on EN 12201-3 where the diameter considered are larger than ISO 4427-3:2019. Dimension have been increased up to dn 3000.

Consideration shall be made that the use of derating factors in defining of the pressure applicable to the fabricated fitting will origin in a fitting classification a PN rounded to the next lower PN according to the Renard R10 series.

NOTE 2 ISO 161-1 defines the PN according to the Renard R10 series.

    1. Mechanical characteristics
      1. Mechanical characteristics of pipes and fittings
        1. General

When tested in accordance with the test methods as specified in Table B.16 using the indicated parameters in Table B.17, the pipe shall have mechanical characteristics conforming to the requirements given in Table B.16.

Table B.16 — Mechanical characteristics

Characteristic

Requirements

Test parameters

Test method

Material

Hydrostatic (hoop) stress

Time

MPa

h

Resistance to internal pressure at 20 °C

 

PE 80

PE 100 and PE 100-RC

10,0

12,0

≥100

ISO 1167‑1

ISO 1167‑2

Resistance to internal
pressure
at 80 °C

No failure during the
test period

PE 80

PE 100 and PE 100-RC

4,5

5,4

≥165a

ISO 1167‑1

ISO 1167‑2

Resistance to internal pressure
at 80 °C

No failure during the

test period

PE 80

PE 100 and PE 100-RC

4,0

5,0

≥1 000

ISO 1167‑1

ISO 1167‑2

 

 

 

 

 

 

a If a failure occurs before the required minimum time, B.4.1.2 shall be applied.

Table B.17 — Test conditions for internal pressure testing

Test parameters

End caps

Orientation

Conditioning period

Type of test

Type A according to ISO 1167‑1

Free

In accordance with ISO 1167‑1

Water-in-water or water-in-aira

a In case of dispute, water-in-water shall be used.

        1. Retest in case of failure at 80 °C

A fracture in a brittle mode in less than 165 h shall constitute a failure, however, if a sample in the 165 h test fails in a ductile mode in less than 165 h, a retest shall be performed at a selected lower stress in order to achieve the minimum required time for the selected stress obtained from the line through the stress/time points given in Table B.18.

Table B.18 — Test parameters for retest of hydrostatic (hoop) stress at 80 °C

PE 80

PE 100 and PE 100-RC

Stress

Minimum
test period

Stress

Minimum
test period

MPa

h

MPa

h

4,5

165

5,4

165

4,4

233

5,3

256

4,3

331

5,2

399

4,2

474

5,1

629

4,1

685

5,0

1 000

4,0

1 000

-

-

      1. Mechanical characteristics of valves

The valves shall conform to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type.

    1. Physical characteristics
      1. Physical characteristics of pipes

When tested in accordance with the test methods as specified in Table B.19, using the indicated parameters, the pipe shall have physical characteristics conforming to the requirements given in Table B.19.

Table B.19 — Physical characteristics of pipes

Characteristic

Requirements

Test parameters

Test method

Oxidation induction time (Thermal stability)

≥10 min

Test temperature

Test environment

Specimen weight

210 °C a,b

Oxygen

15 ± 2 mg

ISO 11357‑6

Melt mass-flow rate (MFR) for PE 80, PE 100, and PE 100-RC

After processing maximum deviation of ±20 % of the value measured on the batch used to manufacture the pipe b

Test temperature

Loading mass

Time

Number of test pieces

190 °C

5 kg

10 min

Shall conform to ISO 1133-1

ISO 1133‑1

Longitudinal reversion

Wall thickness ≤16 mm

≤3 %
Original appearance of the pipe shall remain

Test temperature PE 80, PE 100, and PE 100-RC
Length of test piece
Immersion time
Test method Number of test piecesa

 
110 °C
 
200 mm
1 h
Free
Shall conform to
ISO 2505

ISO 2505

Resistance to SCG for
PE 80 and PE 100

Notched Pipe test

(NPT) e

No failure during the test period

Thickness
Test temperature
Internal test pressure for:
 
PE 80, SDR 11
PE 100, SDR 11
 
Test period
Type of test
 
 
 
 
Number of test pieces g

e > 5 mm
80 °C
 
 
 
8,0 bar f
9,2 bar f
 
≥ 500 h
Water internal and water external to the test piece (“water-in-water”)
 
Shall conform to
ISO 13479

ISO 13479

Resistance to SCG for
PE 100-RC

Strain-hardening test
(SHT) h

<Gp> ≥ 50,0 MPa

Test sample
 
 
 
Test temperature
Thickness
Number of test pieces g

Compression moulded
sheet made from regrind
from pipe i
 
80 °C
300 μm
Shall conform to
ISO 18488

ISO 18488

Resistance to SCG for
PE 100-RC

Accelerated notched
pipe test (ANPT) h

No failure during
the test period

Pipe dimension
Test temperature
Internal test pressure for:
 
PE 100-RC, SDR 11
Test period
Type of test
 
 
 
 
 
Number of test pieces g

dn: 110 mm SDR 11
80 °C
 
 
 
9,2 bar
≥ 300 h j
Water internal and
detergent solution external to the
test piece k
(“water-in-liquid”)
 
Shall conform to
ISO 13479

 

Resistance to rapid
crack propagation
(RCP)
 
Critical pressure, pc l

pc ≥ 1,5 MOP

with

pc = 3,6 pc,s4 + 2,6m

Test temperature
Pressurizing fluidNumber of test pieces g

0 °C
air
Shall conform to
ISO 13477

ISO 13477

a Test may be carried out as an indirect test at 200 °C or 220 °C provided that clear correlation has been established with the results at 210 °C. In case of dispute, the reference temperature shall be 200 °C.

b The value given by the material supplier can be used, but in case of dispute the measurement on granules shall be carried out by the pipe manufacturer

c Two samples to be taken from the outer and inner pipe surfaces.

d The sample thickness is free and not in accordance with ISO 11357-6

e This test is not performed on PE 100-RC pipes.

f For other SDR classes, values are given in ISO 13479:2022, Annex B.

g The number of test pieces given indicates the number required to establish a value for the characteristic described in this table. The number of test pieces required for factory production control and process control should be listed in the manufacturer’s quality plan. Guidance on assessment of conformity can be found in CEN/TS 1555-7

h These tests are specifically for PE 100-RC materials. The SHT is intended to be used for size group 1, the ANPT for size group 2, and the CRB test for size group 3, 4 or 5, see CEN/TS 1555-7. Because nonylphenol ethoxylate is currently unavailable in certain markets, the SHT may be used for size group 2 as alternative test until a requirement using a new detergent for ANPT has been defined.

i The sample for the SHT shall be taken across the pipe wall or the whole pipe in case of small diameter. The outer surface shall be scraped to remove any contamination present.

j This requirement correlates to a test on 110 mm diameter SDR 11 PE 100-RC pipe in accordance with ISO 13479, at a pressure level of 9,2 bar at 80 °C, water-in-water, with no failure in a test period of 8 760 h.[15] The ANPT test has been developed based on testing 110 mm SDR 11 pipe, see ISO 13479:2022, Annex D. Research is ongoing to define requirements for other pipe diameters and SDR ratios in this test.

k Nonylphenol ethoxylate (CAS number 9016-45-9) with a trade name of Arkopal® N100* is used for this test with a concentration for testing using 2 % (mass fraction) aqueous solution. This detergent will be replaced by lauramine oxide (CAS number 85408–49–7), which is commercially available as Dehyton® PL**. The requirement for the ANPT using lauramine oxide is under development at the time of publication of this document.

l Rapid crack propagation testing is only required when the wall thickness of the pipe is greater than the wall thickness of the pipe used in the rapid crack propagation PE compound test (see ISO 4437-1, Table 2). Rapid crack propagation testing is required at sub-zero temperatures for applications at such temperatures.

m If the requirement is not met or S4 test equipment not available, then (re)testing by using the full scale test shall be performed in accordance with ISO 13478. In this case: pc = pc,full scale.

      1. Physical characteristics of fittings

When tested in accordance with the test method as specified in Table B.20 using the indicated parameters, the fitting shall have physical characteristics conforming to the requirements given in Table B.20.

Table B.20 — Physical characteristics of fittings

Characteristic

Requirements

Test parameters

Test method

Oxidation induction time
(Thermal stability)

≥10 min

Test temperature

Number of test pieces a

Test environment

Specimen weight d

210 °Cd

3

Oxygen

15 mg ± 2 mg

ISO 11357‑6

Melt mass-flow rate (MFR) b

When processing the material into a fitting, the MFR value specified by the raw compound manufacturer may deviate at maximum ±20 % compared with the raw materialb

Test temperature

Load

Test period

Number of test pieces

190 °C

5 kg

10 min

Shall conform to ISO 1133‑1

ISO 1133‑1

Resistance to SCG for
PE 100-RC

Strain-hardening test
(SHT) e

<Gp> ≥ 50,0 MPa

Test sample
 
 
 
Test temperature
Thickness
Number of test pieces g

Compression moulded
sheet made from regrind
from pipe f
 
80 °C
300 μm
Shall conform to
ISO 18488

ISO 18488

a Test may be carried out as an indirect test at 200 °C or 220 °C provided that clear correlation has been established with the results at 210 °C. In case of dispute, the reference temperature shall be 200 °C.

b The value given by the material supplier can be used, but in case of dispute the measurement on granules shall be carried out by the pipe manufacturer

c Two samples to be taken from the outer and inner pipe surfaces.

d The sample thickness is free and not in accordance with ISO 11357-6.

e In case fittings are made of and marked as PE100-RC, the SCG performance has to be passed

i The sample for the SHT shall be taken across the pipe wall or the whole pipe in case of small diameter. The outer surface shall be scraped to remove any contamination present.

      1. Physical characteristics of valves

In addition to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type, the physical characteristics of valves shall conform to B.5.2.

    1. Fitness for purpose of the system

Fitness for purpose of the system shall be deemed to apply when test pieces assembled in accordance with 12.2 and tested using the test methods and indicated parameters as specified in Table B.21 conforming to the requirements given in Table B.21

Table B.21 — General requirements for fitness for purpose of the system

Characteristic

Requirements

Test parameters

Test method

Hydrostatic strength
at 20 °C

for fusion and mechanical joints

No failure during the test period

End caps

Type A

ISO 1167‑1

ISO 1167‑4

Orientation

Free

Test temperature

20 °C

Type of test

Water-in-water or water-in-aira

Hydrostatic (hoop) stress:

PE 80

PE 100 or PE 100-RC

 

 

1,2 PNb

Conditioning period

In accordance with
ISO 1167-1

Test period

≥1 000 h

a In case of dispute, water-in-water applies.

b PN of the system.


  1. (normative)

    Specific characteristics and requirements for industrial piping systems made from polyethylene of raised temperature resistance (PE-RT)
    1. Material
      1. General

This Annex is applicable to the following types of polyethylene of raised temperature resistance:

— polyethylene of raised temperature resistance (PE-RT) Type I;

— polyethylene of raised temperature resistance (PE-RT) Type II.

      1. Material classification

The material shall be evaluated according to ISO 9080 by analysis of sustained pressure tests carried out in accordance with ISO 1167‑1 and ISO 1167‑2 at least at 20, 60 to 80 and 95 °C to classify the material in accordance with ISO 12162.

PE-RT (Type 1 and Type II) shall have a minimum required strength, MRS, at least equal to 8,0 MPa.

      1. Material verification of conformity to reference curves

To prove conformance with the reference curves, two methods can alternatively be applied:

— mathematical method (ISO 9080):

the σLPL values, as determined in C.1.2, shall at least be as high as the corresponding values of the reference curves at all temperatures and times of relevance;

— graphical method.

The material shall be tested in accordance with 5.2 at 20 °C, 60 °C to 80 °C, and 95 °C, as well as at various hydrostatic (hoop) stresses, in such a way that at each temperature, at least three failure times fall in each of the following time intervals:

— 10 h to 100 h;

— 100 h to 1 000 h;

— 1 000 h to 8 760 h;

— > 8 760 h.

In tests lasting more than 8 760 h, any time which is reached at a certain stress and time at least on or above the relevant reference curve may be considered as failure time.

Conformance with the reference lines is demonstrated by plotting the individual experimental results on the graph. At least 97,5 % of them shall lie on or above the following reference curves.

Reference curves:

The mathematical description of the reference curves are given by Formula (C.1) to (C.3) for the temperature range 10 °C to 110 °C, the graphical representation is given in Figure C.1 and Figure C.2 for the same temperature range of 10 °C to 110 °C.

NOTE 1 The reference curve for (PE-RT) Type I for 110 °C has been determined separately using water inside and air outside the test specimen and has not been derived from the values of Formula (C.1).

NOTE 2 The calculation for PE-RT is based on ISO 24033[17].

For PE-RT Type I, first branch (i.e. the left-hand portion of the lines shown in Figure C.1):

(C.1)

For PE-RT Type I, second branch (i.e. the right-hand portion of the lines shown in Figure C.1):

(C.2)

For PE-RT Type II, there is only one branch as shown in Figure C.2:

(C.3)

NOTE 3 The reference curves for PE-RT Type II in Figure C.2 in the temperature range of 10 °C to 110 °C are derived from Formula (C.3).

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure C.1—Minimum required hydrostatic strength curves for PE-RT Type I

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure C.2 — Minimum required hydrostatic strength curves for PE-RT Type II

The endpoints of curves in the graph (Figures C.1 and C.2) are given just as an example; the extrapolation time limit for a specific material (endpoints of the regression lines) has to be determined based on the method given in ISO 9080.

      1. Material characteristics

The material from which the components are manufactured shall conform to the requirements given in Table C.1

Table C.1 — Material characteristics of PE-RT

Characteristic

Requirementsa

Test parameters

Test method

Melt mass-flow rate (MFR)

Type I ≤ 2,5 g/10 min

Type II ≤ 2,0 g/10 min

Test temperature

Loading mass

190 °C

5 kg

ISO 1133‑1

Pigment
dispersion

≤Grade 3

Preparation of
test pieces

Compression or
microtome cutb

ISO 18553

Thermal stability tested by
resistance to
internal
pressure at 110 °Cc

No failure during
the test period

End caps
 
Orientation

Conditioning period

Type A according
to ISO 1167‑1

Free

According to
ISO 1167‑1

ISO 1167‑1

ISO 1167‑2

Type of test

Water-in-air

Hydrostatic (hoop)
stress

Type I 1,9 MPa
Type II 2,3 MPa

Test temperature
Test period

110 °C
8 760 h

a Conformity to these requirements shall be declared by the raw compound manufacturer.

b In case of dispute, the compression method shall be used.

c Carried out as type test only (see Table C.4). Results from evaluation according to ISO 9080:2012 shall be taken into account.

      1. Coextruded pipe

PE-RT pipes with co-extruded layers on either or both the outside and/or inside of the pipe (total outside diameter, dn) where all PE-RT layers shall be of the same type or MRS.

    1. General characteristics: colour

Non pigmented pipes can be used provided that UV protection is not needed. Different pigmentation can be agreed upon between manufacturer and purchaser.

    1. Geometrical characteristics

Diameters up to and including a 1 000 mm are applicable for PE-RT pipes and fittings. The dimensions of PE pipes and fittings are applicable, see B.3.

    1. Mechanical characteristics
      1. Mechanical characteristics of pipes and fittings

When tested as specified in Table C.2 using the indicated parameters, the components shall withstand the hydrostatic stress without bursting or leaking under the test conditions given in Table C.3.

Table C.2 — Requirements for internal pressure testing

Characteristic

Requirements

Test parameters

Test methoda

Hydrostatic (hoop) stress
MPa

Time

h

Type I

Type II

Resistance to internal pressure
at 20 °C

No failure during the
test period

9,9

10,8

≥1

ISO 1167‑1
ISO 1167‑2
ISO 1167‑3

Resistance to internal pressure
at 95 °C

3,6

3,7

≥165

ISO 1167‑1
ISO 1167‑2
ISO 1167‑3

Resistance to internal pressure
at 95 °C

3,4

3,6

≥1 000

ISO 1167‑1
ISO 1167‑2
ISO 1167‑3

a Fittings shall be prepared in accordance with ISO 1167‑3 and tested in accordance with ISO 1167‑2.

Table C.3 — Test conditions for internal pressure testing

Test parameters

End caps

Orientation

Conditioning period

Type of test

Type A according to ISO 1167‑1

Free

In accordance with 1167-1

Water inside and outside the test specimen or water inside-air outside the test specimena

a In case of dispute, water inside and outside the test specimen shall be used.

      1. Mechanical characteristics of valves

The valves shall conform to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type.

    1. Physical characteristics
      1. Physical characteristics of pipes

When tested in accordance with the test methods as specified in Table C.4 using the indicated parameters, the pipe shall have physical characteristics conforming to the requirements given in Table C.4.

Table C.4 — Physical characteristics of pipes

Characteristic

Requirements

Test parameters

Test method

Melt mass-flow rate (MFR)

20 % maximum difference compared to material

Test temperature

190 °C

ISO 1133‑1

 

 

Loading mass

5 kg

 

Longitudinal reversion

≤2 %

Temperature

110 °C

ISO 2505

Duration of exposure:

 

e ≤ 8 mm
8 mm < e ≤ 16 mm
Number of test pieces

1  h
2 h
3

Thermal
stability tested
by resistance
to internal
pressure at 110 °C

No failure during
the test period

End caps

Type A according
to ISO 1167‑1

ISO 1167‑1
ISO 1167‑2

Orientation

Not specified

Type of test

Water-in-air

Hydrostatic (hoop)
stress

Type I 1,9 MPa
Type II 2,3 MPa

Test temperature

Test period

110 °C

8 760 h

Resistance to rapid crack propagation c (Critical pressure, pc) (e ≥ 15 mm)
(RCP)

Arrest

Test temperature

Number of test pieces b
 
Dimension
 
Internal test pressure for:
MRS 8
MRS 10
 
Test medium

0 °C

Shall conform to ISO 13477
 
dn: 250 mm SDR 11
 
 
8,0 bar
10,0 bar
 
Air

ISO 13477

Resistance to SCG for
MRS 8 and
MRS 10

Notched Pipe test

(NPT) e

No failure during the test period

Thickness
Test temperature
Internal test pressure for:
 
MRS 8, SDR 11
MRS 10, SDR 11
 
Test period
Type of test
 
 
 
 
Number of test pieces g

e > 5 mm
80 °C
 
 
 
8,0 bar f
9,2 bar f
 
≥ 500 h
Water internal and water external to the test piece (“water-in-water”)
 
Shall conform to
ISO 13479

ISO 13479

      1. Physical characteristics of fittings

When tested in accordance with the test method as specified in Table C.5 using the indicated parameters, the fitting shall have physical characteristics conforming to the requirements given in Table C.5.

Table C.5 — Physical characteristics of fittings

Characteristic

Requirements

Test parameters

Test method

Melt mass-flow rate (MFR)

30 % maximum difference compared to material

Test temperature

Loading mass

190 °C

5 kg

ISO 1133‑1

      1. Physical characteristics of valves

In addition to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type, the physical characteristics of valves shall conform to C.5.2.

    1. Fitness for purpose of the system

Fitness for purpose of the system shall be deemed to apply when test pieces are assembled in accordance with 12.2 and tested using the test methods and indicated parameters as specified in Table C.6 conforming to the requirements given in Table C.6.

Table C.6 — General requirements for fitness for purpose of the system

Characteristic

Requirements

Test parameters

Test method

Hydrostatic strength
at 95 °C

No failure
during the
test period

End caps
Orientation
Test temperature
Type of test

Type A according to ISO 1167‑1
Free
95 °C
Water inside and outside the test specimen or water inside-air outside the test specimena

ISO 1167‑1

ISO 1167‑4

Hydrostatic (hoop)
stress

Conditioning period

Type I 3,4 MPa
Type II 3,6 MPa

In accordance with ISO 1167‑1

Test period

≥1 000 h

a In case of dispute, water inside and outside the test specimen shall be used.


  1. (normative)

    Specific characteristics and requirements for industrial piping systems made from crosslinked polyethylene (PE-X)
    1. Material

Note: In case of PE-X, the material is existing only in form of a component (crosslinked pipe)

      1. Material classification

The material shall be evaluated according to ISO 9080 by analysis of sustained pressure tests carried out in accordance with ISO 1167‑1 and ISO 1167‑2 at least at 20, 60 to 80 and 95 °C to classify the material in accordance with ISO 12162.

      1. Material verification of conformity to reference curves

To prove conformance with the reference curves, two methods can alternatively be applied:

— mathematical method (ISO 9080):

the σLPL values, as determined in D.1.2, shall at least be as high as the corresponding values of the reference curves at all temperatures and times of relevance;

graphical method.

The material shall be tested in accordance with 5.2 at 20 °C, 60 °C to 80 °C and 95 °C as well as at various hydrostatic (hoop) stresses in such a way that at each temperature, at least three failure times fall in each of the following time intervals:

— 10 h to 100 h;

— 100 h to 1 000 h;

— 1 000 h to 8 760 h;

— >8 760 h.

In tests lasting more than 8 760 h, any time which is reached at a certain stress and time at least on or above the relevant reference curve may be considered as failure time.

Conformance with the reference lines is demonstrated by plotting the individual experimental results on the graph. At least 97,5 % of them shall lie on or above the following reference curves.

Reference curves:

The mathematical description of the reference curves are given by Formula (D.1) and Formula (D.2) for the temperature range 10 °C to 110 °C, the graphical representation is given in Figure D.1 also for the temperature range of 10 °C to 110 °C.

(D.1)

NOTE The calculation for PE-X is based on ISO 10146[18]

The 110 °C values have been determined separately using water inside and air outside the test specimen. The reference line is described by Formula (D.2):

(D.2)

 

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure D.1 — Minimum required hydrostatic strength curves for PE-X

The endpoints of curves in the graph (Figure D.1) are given just as an example; the extrapolation time limit for a specific material (endpoints of the regression lines) has to be determined based on the method given in ISO 9080.

      1. Material characteristics

The material from which the components are manufactured shall conform to the requirements given in Table D.1.

Table D.1— Characteristics of PE-X pipe

Characteristic

Requirementsa

Test parameters

Test method

Crosslink degree
PE-Xa – peroxide
PE-Xb – silane
PE-Xc - electron beam

>70 %
>65 %
>60 %

Shall conform to ISO 10147

ISO 10147

Thermal stability tested by resistance to internal pressure at 110 °C

No failure during
the test period

End caps

Type a) according
to ISO 1167‑1

ISO 1167‑1

ISO 1167‑2

Orientation

Free

Conditioning period

According to
ISO 1167‑1

Type of test

Water-in-air

Hydrostatic (hoop)
stress

2,5 MPa

Test temperature

110 °C

Test period

8 760 h

Slow crack growthc

>5 000 h

110 mm SDR 11 pipe

 

ISO 13479

Pressure:

PE-Xd

Test temperature

 

8,0 bar

80 °C

RCP arrest
temperaturee,f

<50 C

Pipe size

>90 mm

ISO 13477

Stress level

PE-Xd

6,4 MPa

a Conformity to these requirements shall be declared by the pipe manufacturer.

b To be carried out on compounds. In case of dispute, the compression method shall be used.

c Carried out as type test only. Results from evaluation according to ISO 9080:2012 shall be taken into account.

d Materials conforming to the reference line in accordance with D.1.2.

e RCP evaluation of pipes intended for pipes of diameter <90 mm is unnecessary.

f Alternate temperature limits of –20 °C or –35 °C may be used to qualify material for minimum operating temperatures higher than -50 °C.

    1. General characteristics: Colour

Non pigmented pipes can be used provided that UV protection is not needed. Other colours shall be agreed upon between manufacturer and purchaser.

    1. Geometrical characteristics
      1. Dimensions of pipes
        1. Diameters and related tolerances

The mean outside diameter, dem, and the related tolerances shall conform to Table D.3, appropriate to the tolerance grade, whereby the average value of the measurements of the outside diameter made at a distance of dn and 0,1dn, from the end of the test pieces, shall be within the tolerance range for dem specified in Table D.2.

        1. Out-of-roundness

The out-of-roundness for straight lengths shall conform to Table D.3 when measured at the point of manufacture. If other values for the out-of-roundness than those given in Table D.3 are necessary, they shall be agreed upon between manufacturer and purchaser.

For coiled pipes, the maximum out-of-roundness shall be specified by agreement between manufacturer and purchaser.

Table D.2 — Mean outside diameters, related tolerances and out-of-roundness of pipes

Dimensions in millimetres

Nominal
outside diameter
dn

Mean
outside diameter
dem

Tolerance of
outside diameter

Grade Aa

Out-of-roundnessb
(straight pipes)

Grade Ma

 

min.

 

max.

12

12,0

+0,3

1,0

16

16,0

+0,3

1,0

20

20,0

+0,3

1,0

25

25,0

+0,3

1,0

32

32,0

+0,3

1,0

40

40,0

+0,4

1,0

50

50,0

+0,5

1,2

63

63,0

+0,6

1,5

75

75,0

+0,7

1,8

90

90,0

+0,9

2,2

110

110,0

+1,0

2,7

125

125,0

+1,2

3,0

140

140,0

+1,3

3,4

160

160,0

+1,5

3,9

180

180,0

+1,7

200

200,0

+1,8

225

225,0

+2,1

250

250,0

+2,3

280

280,0

+2,6

315

315,0

+2,9

355

355,0

+3,2

400

400,0

+3,6

450

450,0

+4,1

500

500,0

+4,5

560

560,0

+5,0

630

630,0

+5,7

a In accordance with ISO 11922‑1. Tolerances of the outside diameter are rounded up to the next 0,1 mm

b For straight pipes: Grade M (0,024dn).

        1. Wall thicknesses and related tolerances

The wall thickness, e, and the related tolerances shall conform to Table D.3.

Components intended to be welded shall have a minimum wall thickness of 1,9 mm.

Table D.3 — Wall thicknesses and related tolerances

Dimensions in millimetres

Nominal
outside diameter

Wall thickness, e, and related tolerancesc

Pipe series S and standard dimension ratio, SDR

S 10
SDR 21

S 8
SDR 17

S 6,3
SDR 13,6

S 5
SDR 11

S 4
SDR 9

S 3,2
SDR 7,4

dn

en

a

en

a

en

a

en

a

en

a

en

a

12

1,3b

+0,3

1,3b

+0,3

1,3b

+0,3

1,3b

+0,3

1,4

+0,3

1,7

+0,3

16

1,3

+0,3

1,3

+0,3

1,3

+0,3

1,5

+0,3

1,8

+0,3

2,2

+0,4

20

1,3

+0,3

1,3

+0,3

1,5

+0,3

1,9

+0,3

2,3

+0,4

2,8

+0,4

25

1,3

+0,3

1,5

+0,3

1,9

+0,3

2,3

+0,4

2,8

+0,4

3,5

+0,5

32

1,6

+0,3

1,9

+0,3

2,4

+0,4

2,9

+0,4

3,6

+0,5

4,4

+0,6

40

1,9

+0,3

2,4

+0,4

3,0

+0,5

3,7

+0,5

4,5

+0,6

5,5

+0,7

50

2,4

+0,4

3,0

+0,5

3,7

+0,5

4,6

+0,6

5,6

+0,7

6,9

+0,8

63

3,0

+0,5

3,8

+0,5

4,7

+0,6

5,8

+0,7

7,1

+0,9

8,6

+1,0

75

3,6

+0,5

4,5

+0,6

5,6

+0,7

6,8

+0,8

8,4

+1,0

10,3

+1,2

90

4,3

+0,6

5,4

+0,7

6,7

+0,8

8,2

+1,0

10,1

+1,2

12,3

+1,4

110

5,3

+0,7

6,6

+0,8

8,1

+1,0

10,0

+1,2

12,3

+1,4

15,1

+1,7

125

6,0

+0,8

7,4

+0,9

9,2

+1,1

11,4

+1,3

14,0

+1,6

17,1

+1,9

140

6,7

+0,8

8,3

+1,0

10,3

+1,2

12,7

+1,4

15,7

+1,7

19,2

+2,1

160

7,7

+0,9

9,5

+1,1

11,8

+1,3

14,6

+1,6

17,9

+1,9

21,9

+2,3

180

8,6

+1,0

10,7

+1,2

13,3

+1,5

16,4

+1,8

20,1

+2,2

24,6

+2,6

200

9,6

+1,1

11,9

+1,3

14,7

+1,6

18,2

+2,0

22,4

+2,4

27,4

+2,9

225

10,8

+1,2

13,4

+1,5

16,6

+1,8

20,5

+2,2

25,2

+2,7

30,8

+3,2

250

11,9

+1,3

14,8

+1,6

18,4

+2,0

22,7

+2,4

27,9

+2,9

34,2

+3,6

280

13,4

+1,5

16,6

+1,8

20,6

+2,2

25,4

+2,7

31,3

+3,2

38,3

+4,0

315

15,0

+1,6

18,7

+2,0

23,2

+2,5

28,6

+3,0

35,2

+3,7

43,1

+4,5

355

16,9

+1,9

21,1

+2,3

26,1

+2,8

32,2

+3,4

39,7

+4,1

48,5

5,0

400

19,1

+2,1

23,7

+2,5

29,4

+3,1

36,3

+3,8

44,7

+4,6

54,7

+5,6

450

21,5

+2,3

26,7

+2,8

33,1

+3,5

40,9

+4,2

50,3

+5,2

500

23,9

+2,5

29,7

+3,1

36,8

+3,8

45,4

+4,7

55,8

+5,7

-

-

560

26,7

+2,8

33,2

+3,5

41,2

+4,2

-

-

62,5

+6,4

-

-

630

30,0

+3,1

37,4

+3,9

46,3

+4,8

-

-

70,3

+7,2

-

-

a Tolerance of the wall thickness: 0,1e + 0,1 mm, rounded up to the next 0,1 mm.

b For dn = 12, a non-preferred wall thickness of 1,1 mm may be chosen.

c All dimensions correspond to ISO 4065.

      1. Dimensions of fittings
        1. General

This Annex is applicable for the following types of fittings:

— electrofusion fittings;

— flange adaptors and loose backing flanges;

— mechanical fittings.

        1. Electrofusion fittings
          1. Dimensions of sockets of electrofusion fittings

The dimensions of sockets of electrofusion fittings (see Figure D.2) shall conform to Table D.4.

In the case of a fitting having sockets of different sizes (e.g. reduction), each socket shall conform to the requirements of the corresponding nominal diameter.

The mean inside diameter of the fitting in the middle of the fusion zone, D1, shown in Figure D.2 shall not be less than dn. The manufacturer shall declare the actual maximum and minimum values of D1 and L1 for determining suitability for clamping and joint assembly.

In case of using spigot end fittings, the outside tubular length of the fusion end shall allow the assembly with an electrofusion fitting.

Key

D1

mean inside diameter in the fusion zone measured in a plane parallel to the plane of the mouth at a distance of L3 + 0,5L2 from that face

D2

bore, which is the minimum diameter of the flow channel through the body of the fitting

L1

depth of penetration of the pipe or male end of a spigot end fitting. In case of a coupling without stop, it is not greater than half the total length of the fitting

L2

heated length within a socket as declared by the manufacturer, to be the nominal length of the fusion zone

L3

distance between the mouth of the fitting and the start of the fusion zone as declared by the manufacturer to be the nominal unheated entrance length of the fitting (L3 ≥ 5 mm)

Figure D.2 — Dimensions of sockets of electrofusion fittings

Table D.4 — Dimensions of sockets of electrofusion fittings

Dimensions in millimetres

Nominal diameter of fitting

Depth of penetration

Length of the fusion zone

dn

L1

L2

 

min.

max.

min.

16

20

35

10

20

20

37

10

25

20

40

10

32

20

44

10

40

20

49

10

50

20

55

10

63

23

63

11

75

25

70

12

90

28

79

13

110

32

85

15

125

35

90

16

140

38

95

18

160

42

101

20

          1. Other dimensions

Other dimensions of electrofusion fittings shall be specified by the manufacturer.

        1. Flange adaptors and loose backing flanges

Dimensions and tolerances of flange adaptors for electrofusion shall be specified by the manufacturer.

Dimensions of loose backing flanges shall be according to known national and International Standards for flanges.

    1. Mechanical characteristics
      1. Mechanical characteristics of pipes and fittings

When tested as specified in Table D.5, using the indicated parameters, the components shall withstand the hydrostatic stress without bursting or leaking under the test conditions given in Table D.7.

Table D.5 — Requirements for internal pressure testing

Characteristic

Requirements

Test parameters

Test methoda

Hydrostatic (hoop) stress
MPa

Time

H

Resistance to
internal pressure at 20 °C

No failure during test period

12,0b

≥1

ISO 1167‑1

ISO 1167‑2

ISO 1167‑3

Resistance to
internal pressure at 95 °C

4,6b

≥165

ISO 1167‑1

ISO 1167‑2

ISO 1167‑3

Resistance to
internal pressure at 95 °C

4,4b

≥1 000

ISO 1167‑1

ISO 1167‑2

ISO 1167‑3

a Fittings shall be prepared in accordance with ISO 1167‑3 and tested in accordance with ISO 1167‑1.

b For materials complying with the reference curves.

Table D.6 — Test conditions for internal pressure testing

Test parameters

End caps

Orientation

Conditioning period

Type of test

Type A according to ISO 1167‑1

Free

In accordance with ISO 1167‑1

Water-in-water or water-in-aira

a In case of dispute, water-in-water shall be used.

      1. Mechanical characteristics of valves

The valves shall conform to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type.

    1. Physical characteristics
      1. Physical characteristics of pipes

When tested in accordance with the test methods specified in Table D.7, using the indicated parameters, the pipe shall have physical characteristics conforming to the requirements given in Table D.7.

Table D.7 — Physical characteristics of pipes

Characteristic

Requirements

Test parameters

Test method

Crosslinking

—   peroxide PE-Xa

—   silane PE-Xb

—   electron beam PE-Xc

 

≥70 %b

≥65 %b

≥60 %b

Shall conform to ISO 10147

ISO 10147

Longitudinal reversiona

Wall thickness ≤ 16 mm

≤3 %

Original
appearance of pipe shall remain

Temperature
Length of test piece
Immersion time:
Test method
Number of test pieces

110 °C
200 mm
1 h
Free
Shall conform to ISO 2505

ISO 2505

Thermal stability tested by resistance to internal pressure at 110 °C

No failure during
the test period

End caps
 
Orientation

Conditioning period

Type A according
to ISO 1167‑1

Free

According to
ISO 1167‑2

ISO 1167‑1

ISO 1167‑2

Type of test

Water-in-air

Hydrostatic (hoop)
stress

2,5 MPa

Test temperature

110 °C

Test period

8 760 h

a The choice of method A or method B is free. In case of dispute, method B shall be used.

b Minimum requirement tested on pipe before delivery

      1. Physical characteristics of fittings

When tested in accordance with the test method specified in Table D.8, using the indicated parameters, the fitting shall have physical characteristics conforming to the requirements given in Table D.8.

Table D.8 — Physical characteristics of fittings

Characteristic

Requirements

Test parameters

Test method

Crosslinking

 

Shall conform to ISO 10147

ISO 10147

— peroxide PE-Xa

≥70 %a

 

 

— silane PE-Xb

≥65 %a

 

 

— electron beam PE-Xc

≥60 %a

 

 

a Minimum requirement tested on fittings before delivery.

      1. Physical characteristics of valves

In addition to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type, the physical characteristics of valves shall conform to D.5.2.

    1. Fitness for purpose of the system

Fitness for purpose of the system shall be deemed to apply when test pieces assembled in accordance with 12.2 and tested using the test methods and indicated parameters as specified in Table D.9 conforming to the requirements given in Table D.9.

Table D.9 — General requirements for fitness for purpose of the system

Characteristic

Requirements

Test parameters

Test method

Hydrostatic strength
at 95 °C

No failure
during the
test period

End caps

Orientation

Test temperature

Type of test

Conditioning period

Hydrostatic (hoop)
stress

Test period

Type A according to ISO 1167‑1

Free

95 °C

Water-in-water or water-in-aira

According to ISO 1167‑1

4,4 MPa

≥1 000 h

ISO 1167‑1

ISO 1167‑4

Pull-out testb

No failure during the test period

Pull out force

Test temperature

Test period

1,5 × F in N

23 °C

1 h

ISO 3501

a In case of dispute, water-in-water shall be used.

b The force, F, shall be calculated using the following formula:


  1. (normative)

    Specific characteristics and requirements for industrial piping systems made from polypropylene (PP)
    1. Material
      1. General

This Annex is applicable to the following types of polypropylene:

— polypropylene homopolymer (PP-H);

— polypropylene block-copolymer (PP-B);

— polypropylene random-copolymer (PP-R);

— polypropylene random-copolymer with modified crystallinity (PP-RCT).

      1. Material classification

The material shall be evaluated according to ISO 9080 by analysis of sustained pressure tests carried out in accordance with ISO 1167‑1 and ISO 1167‑2 at least at 20, 60 to 80 and 95 °C to classify the material in accordance with ISO 12162.

The applicable PP-types shall have a minimum required strength, MRS, as given in Table E.1.

Table E.1 — MRS-values of PP-types

PP-type

MRS-value

PP-H

PP-B

PP-R

PP-RCT

≥10,0 MPa

≥8,0 MPa

≥8,0 MPa

≥11,2 MPa

      1. Material verification of conformity to reference curves

To prove conformance with the reference curves the mathematical method (ISO 9080) is used.

The σLPL values, as determined in E.1.2, shall at least be as high as the corresponding values of the reference curves at all temperatures and times of relevance.

The material shall be tested in accordance with 5.2 at 20 °C, 60 °C to 82 °C, and 95 °C, as well as at various hydrostatic (hoop) stresses, in such a way that at each temperature, at least three failure times fall in each of the following time intervals:

— 10 h to 100 h;

— 100 h to 1 000 h;

— 1 000 h to 8 760 h;

— >8 760 h.

In tests lasting more than 8 760 h, any time which is reached at a certain stress and time at least on or above the relevant reference curve may be considered as failure time.

Conformance with the reference lines is demonstrated by plotting the individual experimental results on the graph. At least 97,5 % of them shall lie on or above the following reference curves.

Reference curves:

The mathematical descriptions of the reference curves are given by Formula (E.1) to Formula (E.7) for the temperature range 10 °C to 95 °C, the graphical representation in Figure E.1 to Figure E.4 also for the temperature range of 10 °C to 95 °C. The 110 °C curves are added for information purposes.

NOTE 1 The reference curve for 110 °C has been determined separately by testing using water-in-air and has not been derived from the values of Formula (E.1) to Formula (E.7).

First branch (i.e. the left hand portion of the curves as shown in Figure E.1, Figure E.2, and Figure E.3).

—   PP-H: (E.1)

—   PP-B: (E.2)

—   PP-R: (E.3)

—   PP-RCT: (only one branch)

(E.4)

Second branch (i.e. the right hand portion of the curves as shown in Figure E.1, Figure E.2, and Figure E.3).

—   PP-H: (E.5)

—   PP-B: (E.6)

—   PP-R: (E.7)

NOTE 2 The calculation for PP is based on ISO 3213.

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure E.1 — Minimum required hydrostatic strength curves for PP-H

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure E.2 — Minimum required hydrostatic strength curves for PP-B

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure E.3 — Minimum required hydrostatic strength curves for PP-R

Key

X1

time to failure, in hours (h)

X2

time to failure, in years

Y

hoop stress, in megapascal (MPa)

Figure E.4 — Minimum required hydrostatic strength curves for PP-RCT

The endpoints of curves in the graph (Figure E.1 to E.4) are given just as an example; the extrapolation time limit for a specific material (endpoints of the regression lines) has to be determined based on the method given in ISO 9080.

      1. Material characteristics

The final compound, including all additives and pigments, from which the components are manufactured shall conform to the requirements given in Table E.2.

Table E.2 — Material characteristics of PP

Characteristic

Requirementsa

Test parameters

Test method

Pigment
dispersion

Grade ≤3

Rating of appearance A1, A2, A3 or B

Preparation of
test pieces

Compression or
microtome cutb

ISO 18553

Charpy impact
resistance f g

≥ 4 kJ/m2

Test temperature

Test pieces

0 °C

Notched

ISO 179-1/1eA

Melt mass-flow rate (MFR)d

(0,18 ≤ MFR ≤ 0,5) g/10 min

Test temperature

Loading mass

Number of test pieces

ore

230 °C

2,16 kg

3

ISO 1133‑1

(0,28 ≤ MFR ≤ 1,1) g/10 min

Test temperature

Loading mass

Number of test pieces

190 °C

5 kg

3

Thermal
stability tested by resistance to internal pressure at 110 °Cc

No failure during
the test period

Material

Hydrostatic (hoop) stress

MPa

Time
h

ISO 1167‑1
ISO 1167‑2

PP-H
PP-B
PP-R
PP-RCT

1,9
1,4
1,9
2,6

≥8 760

a Conformity to these requirements shall be declared by the raw compound manufacturer.

b In case of dispute, the compression method shall be used.

c Test conditions are given in Table E.14.

d In case of dispute, the test method agreed upon in the customer product specification with the raw compound manufacturer shall be used.

e Alternative test method.

f These requirements do not apply to PP-H materials.

g After 7 days of injection/machining

    1. General characteristics: Colour

Components made from PP should preferably be grey (RAL 7032). Other colours shall be agreed upon between manufacturer and purchaser.

NOTE 1 RAL-colour cards are obtainable from national standards institutes.

NOTE 2 For colouring of grey components, titanium dioxide TiO2 (rutile type) is recommended.

    1. Geometrical characteristics
      1. Dimensions of pipes
        1. Diameters and related tolerances

The mean outside diameter, dem, and the related tolerances shall conform to Table E.3, appropriate to the tolerance grade, whereby the average value of the measurements of the outside diameter made at a distance of dn and 0,1dn from the end of the test pieces shall be within the tolerance range for dem specified in Table E.3.

For socket fusion and electrofusion joints where the peeling/scaping techniques is used to prepare the pipe end for fusion and for butt fusion joints pipes with tolerances of Grade A given in ISO 11922‑1 shall be used.

For socket fusion joints where the peeling technique is not used, pipes with tolerances of Grade B given in ISO 11922‑1 shall be used.

        1. Out-of-roundness

The out-of-roundness for straight lengths shall conform to Table E.3 when measured at the point of manufacture. If other values for the out-of-roundness than those given in Table E.3 are necessary, they shall be agreed upon between manufacturer and purchaser.

For coiled pipes, the maximum out-of-roundness shall be specified by agreement between manufacturer and purchaser.

Table E.3 — Mean outside diameters, related tolerances, and out-of-roundness of pipes

Dimensions in millimetres

Nominal outside
diameter

dn

Mean outside diameter

dem

Tolerance of
outside diameter

Out-of-roundnessb
(straight pipes)

Grade Aa

Grade Ba

Grade Na

min.

max.

12

12,0

+0,3

+0,3

1,2

16

16,0

+0,3

+0,3

1,2

20

20,0

+0,3

+0,3

1,2

25

25,0

+0,3

+0,3

1,2

32

32,0

+0,3

+0,3

1,3

40

40,0

+0,4

+0,4c

1,4

50

50,0

+0,5

+0,4c

1,4

63

63,0

+0,6

+0,4

1,5

75

75,0

+0,7

+0,5

1,6

90

90,0

+0,9

+0,6

1,8

110

110,0

+1,0

+0,7

2,2

125

125,0

+1,2

+0,8

2,5

140

140,0

+1,3

-

2,8

160

160,0

+1,5

-

3,2

180

180,0

+1,7

-

3,6

200

200,0

+1,8

-

4,0

225

225,0

+2,1

-

4,5

250

250,0

+2,3

-

5,0

280

280,0

+2,6

-

9,8

315

315,0

+2,9

-

11,1

355

355,0

+3,2

-

12,5

400

400,0

+3,6

-

14,0

450

450,0

+4,1

-

15,8c

500

500,0

+4,5

-

17,5

560

560,0

+5,1

-

19,6

630

630,0

+5,7

-

22,1

710

710,0

+6,4

-

24,9

800

800,0

+7,2

-

28,0

900

900,0

+8,1

-

31,5

1 000

1 000,0

+9,0

-

35,0

1 200

1 200,0

+10,0

-

42,0

1 400

1 400,0

+10,0

-

49,0

1 600

1 600,0

+10,0

-

56,0

a In accordance with ISO 11922‑1. Tolerances of the outside diameter are rounded up to the next 0,1 mm.

b For straight pipes, Grade N for: dn ≤ 75 mm (0,008dn + 1,0 mm); 90 mm ≤ dn ≤ 250 mm (0,02dn); dn > 250 mm (0,035dn).

c Not in accordance with ISO 11922‑1.

        1. Wall thicknesses and related tolerances

The wall thickness, e, and the related tolerances shall conform to Table E.4.

Table E.4 — Wall thicknesses and related tolerances

Dimensions in millimetres

Nominal outside diameter

Wall thickness, e, and related tolerancesb

Pipe series S and standard dimension ratio, SDR

S 20

SDR 41

S 16

SDR 33

S 12,5

SDR 26

S 8,3

SDR 17,6

S 8

SDR 17

S 5

SDR 11

S 3,2

SDR 7,4

S 2,5

SDR 6

Dn

en

a

en

a

en

a

en

a

en

a

en

a

en

a

en

a

12

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2,0

+0,3

16

-

-

-

-

-

-

-

-

-

-

-

-

2,2

+0,4

2,7

+0,4

20

-

-

-

-

-

-

-

-

-

-

1,9

+0,3

2,8

+0,4

3,4

+0,5

25

-

-

-

-

-

-

-

-

-

-

2,3

+0,4

3,5

+0,5

4,2

+0,6

32

-

-

-

-

-

-

-

-

1,9

+0,3

2,9

+0,4

4,4

+0,6

5,4

+0,7

40

-

-

-

-

-

-

2,3

+0,4

2,4

+0,4

3,7

+0,5

5,5

+0,7

6,7

+0,8

50

-

-

-

-

2,0

+0,3

2,9

+0,4

3,0

+0,4

4,6

+0,6

6,9

+0,8

8,3

+1,0

63

-

-

2,0

+0,3

2,5

+0,4

3,6

+0,5

3,8

+0,5

5,8

+0,7

8,6

+1,0

10,5

+1,2

75

-

-

2,3

+0,4

2,9

+0,4

4,3

+0,6

4,5

+0,6

6,8

+0,8

10,3

+1,2

12,5

+1,4

90

2,2

+0,4

2,8

+0,4

3,5

+0,5

5,1

+0,7

5,4

+0,7

8,2

0,9

12,3

+1,4

15,0

+1,6

110

2,7

0,4

3,4

+0,5

4,2

+0,6

6,3

+0,8

6,6

+0,8

10,0

+1,1

15,1

+1,7

18,3

+2,0

125

3,1

+0,5

3,9

+0,5

4,8

+0,6

7,1

+0,9

7,4

+0,9

11,4

+1,3

17,1

+1,9

20,8

+2,2

140

3,5

+0,5

4,3

+0,6

5,4

+0,7

8,0

+0,9

8,3

+1,0

12,7

+1,4

19,2

+2,1

23,3

+2,5

160

4,0

+0,5

4,9

+0,6

6,2

+0,8

9,1

+1,1

9,5

+1,1

14,6

+1,6

21,9

+2,3

26,6

+2,8

180

4,4

+0,6

5,5

+0,7

6,9

+0,8

10,2

+1,2

10,7

+1,2

16,4

+1,8

24,6

+2,6

29,9

+3,1

200

4,9

+0,6

6,2

+0,8

7,7

+0,9

11,4

+1,3

11,9

+1,3

18,2

+2,0

27,4

+2,9

33,2

+3,5

225

5,5

+0,7

6,9

+0,8

8,6

+1,0

12,8

+1,4

13,4

+1,5

20,5

+2,2

30,8

+3,2

37,4

+3,9

250

6,2

+0,8

7,7

+0,9

9,6

+1,1

14,2

+1,6

14,8

+1,6

22,7

+2,4

34,2

+3,6

41,5

+4,3

280

6,9

+0,8

8,6

+1,0

10,7

+1,2

15,9

+1,7

16,6

+1,8

25,4

2,7

38,3

+4,0

46,5

+4,7

315

7,7

+0,9

9,7

+1,1

12,1

+1,4

17,9

+1,9

18,7

+2,0

28,6

+3,0

43,1

+4,5

-

-

355

8,7

+1,0

10,9

+1,2

13,6

+1,5

20,1

+2,2

21,1

+2,3

32,2

+3,4

48,5

+5,0

-

-

400

9,8

+1,1

12,3

+1,4

15,3

+1,7

22,7

+2,4

23,7

+2,5

36,3

+3,8

54,7

+5,6

-

-

450

11,0

+1,2

13,8

+1,5

17,2

+1,9

25,5

+2,7

26,7

+2,8

40,9

+4,2

-

-

-

-

500

12,3

+1,4

15,3

+1,7

19,1

+2,1

28,3

+3,0

29,7

+3,1

45,4

+4,7

-

-

-

-

560

13,7

+1,5

17,2

+1,9

21,4

+2,3

31,7

+3,3

33,2

+3,5

50,8

+5,2

-

-

-

-

630

15,4

+1,7

19,3

+2,1

24,1

+2,6

35,7

+3,7

37,4

+3,9

57,2

5,9

-

-

-

-

710

17,4

+1,9

21,8

+2,3

27,2

+2,9

40,2

+4,2

42,1

+4,4

-

-

-

-

-

-

800

19,6

+2,2

24,5

+2,6

30,6

+3,2

45,3

+4,7

47,4

+4,9

-

-

-

-

-

-

900

22,0

+2,3

27,6

+2,9

34,4

+3,6

51,0

+5,2

53,3

5,5

-

-

-

-

-

-

1 000

24,5

+2,6

30,6

+3,2

38,2

+4,0

56,7

+5,8

-

-

-

-

-

-

-

-

1 200

29,4

+3,1

36,7

+3,8

45,9

+4,7

-

-

-

-

-

-

-

-

-

-

1 400

34,3

+3,6

42,9

+4,4

53,5

+5,5

-

-

-

-

-

-

-

-

-

-

1 600

39,2

+4,1

49,0

+5,0

61,2

+6,3

-

-

-

-

-

-

-

-

-

-

a Tolerance of the wall thickness: 0,1e + 0,1 mm, rounded up to the next 0,1 mm.

b All dimensions correspond to ISO 4065.

      1. Dimensions of fittings
        1. General

This Annex is applicable for the following types of fittings:

— butt fusion fittings;

— socket fusion fittings;

— electrofusion fittings;

— flange adaptors and loose backing flanges;

— mechanical fittings.

        1. Butt fusion fittings
          1. Outside diameters

The mean outside diameter, dem, of the spigot end (see Figure E.5) over the length, Lb2 (see Table E.5) shall conform to E.3.1.1, except between the plane of the entrance face and the plane parallel to it, located at a distance not greater than 0,01dn + 1 mm where a reduction of the outside diameter is permissible (e.g. for circumferential reversion).

          1. Out-of-roundness

The out-of-roundness of the spigot end (see Figure E.5) over the length, Lb2 (see Table E.5) shall conform to E.3.1.2.

          1. Wall thickness of the spigot end

The wall thickness, e, of the spigot end (see Figure E.5) over the length, Lb1 (see Table E.5) shall conform to E.3.1.3, except between the plane of the entrance face and the plane parallel to it, located at a distance not greater than 0,01dn + 1 mm where a thickness reduction is permissible (e.g. for chamfered edge).

Key

Lb1

minimum inside tubular length of the fusion end, which comprises the initial depth of the spigot end which is necessary for butt fusion

Lb2

minimum outside tubular length of the fusion end, which comprises the initial length of the fusion end

Figure E.5 — Dimensions of spigot end for butt fusion fittings

Table E.5 — Dimensions of spigot ends for butt fusion fittings

Dimensions in millimetres

Nominal outside
diameter

dn

Inside tubular length

Lb1a

Outside tubular length

Lb2a

min.

min.

12

4

10

16

4

10

20

4

10

25

4

10

32

5

10

40

5

10

50

5

12

63

6

12

75

6

12

90

7

12

110

8

12

125

8

15

140

9

15

160

9

20

180

10

20

200

11

20

225

12

25

250

13

25

280

14

30

315

15

30

355

16

30

400

18

30

450

20

35

500

20

35

560

20

40

630

20

40

710

20

40

800

20

50

900

20

50

1 000

20

60

1 200

20

60

1 400

20

70

1 600

20

70

NOTE The minimum tubular lengths given in this table are too short for electrofusion joints. For this jointing method, a tubular length conforming to the depth of penetration according to Table E.8 is necessary.

a For bends, a reduction of the tubular length(s) is permissible.

          1. Wall thickness of fitting body

The wall thickness, e, of the fitting body shall be at least equal to the minimum wall thickness of the corresponding pipe (see E.3.1.3).

          1. Other dimensions

Other dimensions of butt fusion fittings shall be specified by the manufacturer.

        1. Socket fusion fittings
          1. Types of socket fusion fittings

Socket fusion fittings (see Figure E.6) shall be classified into the following two types.

Type A: Fittings intended to be used with pipes having dimensions as given in E.3.1 where no external machining of the pipe is required.

Type B: Fittings intended to be used with pipes having dimensions as given in E.3.1 where machining of the outside surface of the pipe is necessary in accordance with the instructions of the manufacturer.

          1. Diameters and lengths of sockets

The nominal diameter(s), dn, of a socket fusion fitting shall correspond to, and be designated by, the nominal outside diameter(s) of the pipe(s) for which it is designed.

The diameters and lengths of sockets for socket fusion fittings of type A shall conform to Table E.6. For socket fusion fittings of type B, the diameters and lengths of sockets shall conform to Table E.7.

Key

D1

inside diameter of the socket mouth which comprises the mean diameter of the circle at the inner section of the extension of the socket with the plane of the socket mouth

D2

mean inside diameter of the socket root which comprises the mean diameter of the circle in a plane parallel to the plane of the socket mouth and separated from it by a distance of L1 min

D3

minimum diameter of the flow channel (bore) through the body of a fitting

L1 min

minimum socket length which comprises the distance from the socket mouth to the shoulder

L2 min

minimum insertion length which comprises the depth of penetration of the heated pipe end into the socket;

R

maximum radius at socket root

Figure E.6—Diameters and lengths of socket fusion fittings

Table E.6 — Diameters and lengths of sockets for socket fusion fittings of type A

Dimensions in millimetres

Nominal
outside
diameter of pipe

dn

Mean outside diameter of pipe

Mean inside diameter

Out-of-roundness

Bore

Radius at socket root

Socket length

Penetration
of pipe into socket

Socket mouth

Socket root

dem

D1

D2

D3a

R

L1b

L2c

min.

min.

 

min.

 

max.

min.

max.

min.

min.

16

16,0

15,2

+0,3

15,1

+0,3

0,4

 

9,0

2,5

13,0

9,5

20

20,0

19,2

+0,3

19,0

+0,3

0,4

 

13,0

2,5

14,5

11,0

25

25,0

24,2

+0,3

23,9

+0,4

0,4

18,0

2,5

16,0

12,5

32

32,0

31,1

+0,4

30,9

+0,4

0,5

25,0

3,0

18,0

14,5

40

40,0

39,0

+0,4

38,8

+0,4

0,5

31,0

3,0

20,5

17,0

50

50,0

48,9

+0,5

48,7

+0,5

0,6

39,0

3,0

23,5

20,0

63

63,0

61,9

+0,6

61,6

+0,5

0,6

49,0

4,0

27,5

24,0

75

75,0

73,4

+1,3

72,6

+1,0

1,0

59,0

4,0

30,0

26,0

90

90,0

88,2

+1,5

87,7

+1,0

1,0

69,0

4,0

33,0

29,0

110

110,0

108,0

+1,7

107,0

+1,2

1,0

85,0

4,0

37,0

32,5

125

125,0

122,4

+2,2

121,5

+1,5

1,2

99,7

4,0

40,0

35,0

a Only applicable, if a shoulder exists.

b Length of the socket (rounded), d16 to d63: L1 min = 0,3dn + 8,5 mm; d75 to 110: L1 min = 0,2dn + 15 mm.

c Penetration of pipe into socket, d16 to d63; L2 min = L1 min – 3,5 mm; d75 to d110; No formula available.

Table E.7 — Diameters and lengths of sockets for socket fusion fittings of type B

Dimensions in millimetres

Nominal outside diameter of pipe

Mean outside diameter of pipe

Mean inside diameter

Out-of-roundness

Bore

Radius at socket root

Socket length

Penetration of pipe into socket

Socket mouth

Socket root

dn

dem

D1

D2

D3a

R

L1b

L2c

 

min.

max.

min.

 

min.

 

max.

min.

max.

min.

min.

16

15,8

16,0

15,2

+0,3

15,1

+0,3

0,4

11,0

2,5

13,0

9,5

20

19,8

20,0

19,2

+0,3

19,0

+0,3

0,4

13,0

2,5

14,5

11,0

25

24,8

25,0

24,2

+0,3

23,9

+0,4

0,4

18,0

2,5

16,0

12,5

32

31,8

32,0

31,1

+0,4

30,9

+0,4

0,5

25,0

3,0

18,0

14,5

40

39,8

40,0

39,0

+0,4

38,8

+0,4

0,5

31,0

3,0

20,5

17,0

50

49,8

50,0

48,9

+0,5

48,7

+0,5

0,6

39,0

3,0

23,5

20,0

63

62,7

63,0

61,9

+0,6

61,6

+0,5

0,6

49,0

4,0

27,5

24,0

75

74,7

75,0

73,7

+0,5

73,4

+0,5

1,0

58,0

4,0

31,0

27,5

90

89,7

90,0

88,6

+0,6

88,2

+0,6

1,0

69,0

4,0

35,5

32,0

110

109,6

110,0

108,4

+0,6

108,0

+0,6

1,0

85,0

4,0

41,5

38,0

125

124,6

125,0

122,7

+1,2

122,3

+1,2

1,2

99,7

4,0

46,5

43,0

a Only applicable if a shoulder exists.

b Length of the socket (rounded), L1 min = 0,3dn + 8,5 min.

c Penetration of pipe into socket, L2 min = L1 min – 3,5 mm.

          1. Other dimensions

Other dimensions of socket fusion fittings shall be specified by the manufacturer.

        1. Electrofusion fittings
          1. Dimensions of sockets of electrofusion fittings

The dimensions of sockets of electrofusion fittings (see Figure E.7) shall conform to Table E.8.

In the case of a fitting having sockets of different sizes (e.g. reduction), each socket shall conform to the requirements of the corresponding nominal diameter.

The mean inside diameter of the fitting in the middle of the fusion zone, D1, shown in Figure E.7 shall not be less than dn. The manufacturer shall declare the actual maximum and minimum values of D1 and L1 for determining suitability for clamping and joint assembly.

In case of using spigot end fittings, the outside tubular length of the fusion end shall allow the assembly with an electrofusion fitting.

Key

D1

mean inside diameter in the fusion zone measured in a plane parallel to the plane of the mouth at distance of L3 + 0,5L2 from that face

D2

bore, which is the minimum diameter of the flow channel through the body of the fitting

L1

depth of penetration of the pipe or male end of a spigot end fitting; in case of a coupling without stop, it is not greater than half the total length of the fitting

L2

heated length within a socket as declared by the manufacturer, to be the nominal length of the fusion zone

L3

distance between the mouth of the fitting and the start of the fusion zone as declared by the manufacturer to be the nominal unheated entrance length of the fitting (L3 ≥ 5 mm)

Figure E.7—Dimensions of sockets of electrofusion fittings

Table E.8 — Dimensions of sockets of electrofusion fittings

Dimensions in millimetres

Nominal diameter of fitting

dn

Depth of penetration

L1

Length of the fusion zone

L2

min

max

min

16

20

35

10

20

20

37

10

25

20

40

10

32

20

44

10

40

20

49

10

50

20

55

10

63

23

63

11

75

25

70

12

90

28

79

13

110

32

82

15

125

35

87

16

140

38

92

18

160

42

98

20

180

46

105

21

200

50

112

23

225

55

120

26

250

73

129

30

280

81

139

35

315

89

150

39

355

99

164

42

400

110

179

47

450

122

195

51

500

135

212

56

560

147

235

61

630

161

255

67

          1. Dimensions of electrofusion saddle fittings

The manufacturer shall specify the overall dimensions of the electrofusion saddle fitting (see Figure E.8) in a technical file. These dimensions shall include the maximum height of the saddle, H, and for tapping tees, the height of the service pipe, h.

Key

H

height of the saddle which comprises the distance from the top of the main to the top of the tapping tee or saddle

h

height of the service pipe which comprises the distance from the axis of the main pipe to the axis of the service pipe

L

width of the tapping tee which comprises the distance between the axis of the pipe and the plane of the mouth of the service tee

Figure E.8 — Dimensions of electrofusion saddle fittings

          1. Other dimensions

Other dimensions of electrofusion fittings shall be specified by the manufacturer.

        1. Flange adaptors and loose backing flanges
          1. Dimensions of flange adaptors for butt fusion

Height of the flange adaptor (hf) has been added to the dimensions in Table E.9 and those are the min. dimensions of this flange adaptor for butt fusion in combination with the loose backing rings.

Modified designs of flange adaptors in combination with adopted backing rings are offered to the market as well, here the producer needs to ensure the functionality and safety. In case other materials (like glassfibre reinforced PP in combination with PE) are used for the loose backing rings, the thickness of the backing ring might be much higher.

The dimensions of flange adaptors for butt fusion (see Figure E.9) shall conform to Table E.9.

Key

dn

nominal (outside) diameter of connecting pipe and nominal (inside) diameter of the socket

D

outside diameter of loose backing flange

D1

bolt hole diameter

D2

inside diameter of loose backing flange

D3

pitch circle diameter

D4

outside diameter of flange adapter head

D5

outside diameter of flange adapter shank

hf

height of the flange adaptor shoulder

rf

radius of shoulder of flange adapter

r

radius of flange inside

Figure E.9 — Dimensions of flange adaptors for butt fusion

Table E.9 — Dimensions of flange adaptors for butt fusion

Dimensions in millimetres

Nominal outside
diameter of pipe
and spigot
a

Outside
diameter of
flange adapter head
b

Outside
diameter of
flange adapter
shank
c

Height of the flange adaptor shoulder

Radius of
shoulder of
flange adapter

dn

D4 min

D4 min

D5 min

rf

PN10

PN16

min. hf PN10/PN16

(+0,5 / −0,5)

16

40

22

6

3

20

45

27

7

3

25

58

33

9

3

32

68

40

10

3

40

78

50

11

3

50

88

61

12

3

63

102

75

14

4

75

122

89

16

4

90

138

105

17

4

110

158

125

18

4

125

158

132

25

4

140

188

155

25

4

160

212

175

25

4

180

212

183

30

4

200

268

232

32

4

225

268

235

32

4

250

320

285

35

4

280

320

291

35

4

315

370

378

335

35

4

355

430

438

373

40

6

400

482

490

427

46

6

450

585

610

514

60

6

500

585

610

530

60

6

560

685

725

615

60

6

630

695

725

642

60

6

710

800

800

737

65

8

800

905

905

840

65

8

900

1 005

1 005

944

70

8

1 000

1 110

1 115

1 047

75

8

1 200

1 330

1 330

1 245

90

8

1 400

1 540

1 540

1 450

100

8

1 600

1 760

1 760

1 650

110

10

          1. Dimensions of loose backing flanges for use with flange adaptors for butt fusion

The dimensions of loose backing flanges for use with flange adaptors for butt fusion (see Figure E.10) shall conform for PN10 to Table B.10, for PN16 to Table B.11, for PN25 to Table B.12

Key

dn

nominal (outside) diameter of connecting pipe and nominal (inside) diameter of the socket

D

outside diameter of loose backing flange

D1

bolt hole diameter

D2

inside diameter of loose backing flange

D3

pitch circle diameter

D4

outside diameter of flange adapter head

D5

outside diameter of flange adapter shank

h

thicknesses of loose backing ring

hf

height of the flange adaptor shoulder

rf

radius of shoulder of flange adapter

r

radius of flange inside

Figure E.10 — Dimensions of loose backing flanges for use with flange adaptors for butt fusion

Table E.10 — Dimensions of loose backing flanges for use with flange adaptors for butt fusion –PN10

Dimensions in millimetres

Nominal outside diameter
of pipe

Designation of mating backing flange

Outside diameter

Inside diameter

Radius of Flange inside

Pitch circle diameter

Bolts

Bolt hole diameter

Number

Screw threada

dn

DN

Dmin

D2

r

D3

D1

n

 

16

10

Values from PN25 Table E.12 shall be used

20

15

25

20

32

25

40

32

50

40

63

50

75

65

90

80

110

100

Values from PN16 Table E.11 shall be used

125

100

140

125

160

150

180

150

200

200

340

235

3

295

22

8

M20

225

200

340

238

3

295

22

8

M20

250

250

395

288

3

350

22

12

M20

280

250

395

294

3

350

22

12

M20

315

300

445

338

3

400

22

12

M20

355

350

505

376

4

460

22

16

M20

400

400

565

430

4

515

26

16

M24

450

500

670

517

4

620

26

20

M24

500

500

670

533

4

620

26

20

M24

560

600

780

618

4

725

30

20

M27

630

600

780

645

4

725

30

20

M27

710

700

895

740

5

840

30

24

M27

800

800

1 015

843

5

950

33

24

M30

900

900

1 115

947

5

1 050

33

28

M30

1 000

1 000

1 230

1 050

5

1 160

36

28

M33

1 200

1 200

1 455

1 260

6

1 380

39

32

M36

1 400

1 400

1 675

1 470

7

1 590

42

36

M39

1 600

1 600

1 915

1 670

7

1 820

48

40

M45

a Metric screw thread sizes in millimetres conforming to ISO 261

b To be determined by the purchaser

Table E.11 — Dimensions of loose backing flanges for use with flange adaptors for butt fusion – PN16

Dimensions in millimetres

Nominal
outside
diameter
of pipe

Designation of mating backing flange

Outside diameter

Inside
diameter

Radius of Flange
inside

Pitch circle diameter

Bolts

Bolt hole diameter

Number

Screw threada

dn

DN

Dmin

D2

r

D3

D1

n

 

16

10

Values from PN25 Table E.12 shall be used

20

15

25

20

32

25

40

32

50

40

63

50

75

65

90

80

110

100

220

128

3

180

18

8

M16

125

100

220

135

3

180

18

8

M16

140

125

250

158

3

210

18

8

M16

160

150

285

178

3

240

22

8

M20

180

150

285

188

3

240

22

8

M20

200

200

340

235

3

295

22

12

M20

225

200

340

238

3

295

22

12

M20

250

250

405

288

3

355

26

12

M24

280

250

405

294

3

355

26

12

M24

315

300

460

338

3

410

26

12

M24

355

350

520

376

4

470

26

16

M24

400

400

580

430

4

525

30

16

M27

450

500

715

517

4

650

33

20

M30

500

500

715

533

4

650

33

20

M30

560

600

840

618

4

770

36

20

M33

630

600

840

645

4

770

36

20

M33

710

700

910

740

5

840

36

24

M33

800

800

1 025

843

5

950

39

24

M36

900

900

1 125

947

5

1 050

39

28

M36

1 000

1 000

1 255

1 050

5

1 170

42

28

M39

1 200

1 200

1 485

1 260

6

1 390

48

32

M45

1 400

1 400

1 685

1 470

7

1 590

48

36

M45

1 600

1 600

1 930

1 670

7

1 820

56

40

M52

a Metric screw thread sizes in millimetres conforming to ISO 261

b To be determined by the purchaser

Table E.12 — Dimensions of loose backing flanges for use with flange adaptors for butt fusion – PN25

Dimensions in millimetres

Nominal outside diameter of pipe

Designation of mating backing flange

Outside diameter

Inside
diameter

Radius of Flange
inside

Pitch circle diameter

Bolts

Bolt hole diameter

Number

Screw threadb

dn

DN

Dmin

D2

r

D3

D1

n

 

16

10

90

23

3

60

14

4

M12

20

15

95

28

3

65

14

4

M12

25

20

105

34

3

75

14

4

M12

32

25

115

42

3

85

14

4

M12

40

32

140

51

3

100

18

4

M16

50

40

150

62

3

110

18

4

M16

63

50

165

78

3

125

18

4

M16

75

65

185

92

3

145

18

4

M16

90

80

200

108

3

160

18

8

M16

110

100

235

128

3

190

22

8

M20

125

100

235

135

3

190

22

8

M20

140

125

270

158

3

220

26

8

M24

160

150

300

178

3

250

26

8

M24

180

150

300

188

3

250

26

8

M24

200

200

360

235

3

310

26

12

M24

225

200

360

238

3

310

26

12

M24

250

250

425

288

3

370

30

12

M27

280

250

425

294

3

370

30

12

M27

315

300

485

338

3

430

30

16

M27

355

350

555

376

4

490

33

16

M30

400

400

620

430

4

550

36

16

M33

450

500

730

517

4

660

36

20

M33

500

500

730

533

4

660

36

20

M33

          1. Dimensions of flange adaptors for socket fusion

The dimensions of flange adaptors for socket fusion (see Figure E.11) shall conform to Table E.13.

Key

Df1

outside diameter of chamfer on shoulder

Df2

outside diameter of flange adaptor

rf

radius of chamfer on shoulder

Figure E.11 — Dimensions of flange adaptors for socket fusion

Table E.13 — Dimensions of flange adaptors for socket fusion

Dimensions in millimetres

Nominal outside diameter of the corresponding pipe

dn

Outside diameter of chamfer on shoulder

Df1

Outside diameter of flange adaptor

Df2

Radius of chamfer on shoulder

rf

Height of the flange adaptor shoulder

hf

16

22

40

3

6

20

27

45

3

6

25

33

58

3

7

32

41

68

3

7

40

50

78

3

8

50

61

88

3

8

63

76

102

4

9

75

90

122

4

10

90

108

138

4

11

110

131

158

4

12

          1. Dimensions of loose backing flanges for use with flange adaptors for socket fusion

The dimensions of loose backing flanges for use with flange adaptors for socket fusion (see Figure E.12) shall conform to Table E.14.

Key

Df1

inside diameter of flange

Df2

pitch circle diameter of bolt holes

Df3

outside diameter of flange

Df4

diameter of bolt holes

r

radius of flange

h

thickness of backing flange

NOTE The thickness, h, of the loose backing flange is dependent on the material used.

Figure E.12 — Dimensions of loose backing flanges for use with flange adaptors for socket fusion

Table E.14 — Dimensions of loose backing flanges for use with flange adaptors for socket fusion

Dimensions in millimetres

Nominal outside diameter of the corresponding pipe

Nominal size of flange

Inside diameter of flange

Pitch circle diameter of bolt holes

Outside diameter of flange

Diameter of bolt holes

Radius of flange

Number of bolt holes

Metric thread of bolt

dn

DN

df1

df2

df3

df4

r

N

 

 

 

 

min.

 

 

 

16

10

23

60

90

14

3

4

M12

20

15

28

65

95

14

3

4

M12

25

20

34

75

105

14

3

4

M12

32

25

42

85

115

14

3

4

M12

40

32

51

100

140

18

3

4

M16

50

40

62

110

150

18

3

4

M16

63

50

78

125

165

18

3

4

M16

75

65

92

145

185

18

3

4

M16

90

80

110

160

200

18

3

8

M16

110

100

133

180

220

18

3

8

M16

    1. Mechanical characteristics
      1. Mechanical characteristics of pipes and fittings
        1. Resistance to internal pressure of pipes and fittings

When tested as specified in Table E.16 using the indicated parameters, the components shall withstand the hydrostatic stress without bursting or leaking under the test conditions given in Table E.15.

Table E.15 — Requirements for internal pressure testing

Characteristic

Requirements

Test parameters

Test method

Material

Hydrostatic (hoop) stress

MPa

Time

h

Resistance to internal
pressure
at 20 °C

No failure during the test period

PP-H

PP-B

PP-R

PP-RCT

21,0

16,0

16,0

15,0

≥1

ISO 1167‑1

ISO 1167‑2

ISO 1167‑3

Resistance to internal
pressure
at 95 °C

PP-H

PP-B

PP-R

PP-RCT

3,5

2,5

3,5

3,8

≥1 000

ISO 1167‑1

ISO 1167‑2

ISO 1167‑3

a Fittings shall be prepared in accordance with ISO 1167‑3 and tested in accordance with ISO 1167‑1.

Table E.16 — Test conditions for internal pressure testing

Test parameters

End caps

Orientation

Conditioning period

Type of test

Type A according to ISO 1167‑1

Free

In accordance ISO 1167‑1

Water-in-water or water-in-air a

a In case of dispute, water-in-water shall be used.

        1. Impact resistance of pipes

When tested according to the test methods as specified in the Tables: E.17, E.18, E.19, E.20, E.21 using the indicated parameters, the pipes shall conform to the requirements given in those tables.

Table E.17 — Impact resistance of PP-B, PP-R, PP-RCT pipes

Characteristics

Requirements

Test parameters

Test method

Impact resistance

(Charpy method)

For DN≤25 mm

TIR≤10 %

Test Temperature

Conditioning medium

Test piece type / nr.

0 °C

Liquid bath or air

Whole pipe / 1

ISO 9854-1a

ISO 9854-2a

Impact resistance

(Round-the clock method)

For DN≥32 mm

TIR≤10 %

Test Temperature

Conditioning medium

Type of striker (hemispherical)

 

 

 

 

0 °C

Liquid bath or air

25 mm diameter for striker mass ≤0,8 kg

or

90 mm diameter for striker mass ≥1,6 kg

ISO 3127

 

 

Mass of striker and Fall height of striker

According
table E.18

 

a ISO 9854 series foresees test on specimen not whole pipe, in case of dispute Charpy method shall be applied on specimen

Table E.18 — Test parameters for round the clock method of PP-B, PP-R, PP-RCT pipes at 0 °C with 4kJ/m2<Tbl_--></Tbl_-->

 

DN [mm]

S20
SDR 41

S16
SDR 33

S12,5
SDR 26

S8
SDR 17

S6,3
SDR 13,6

S5
SDR 11

S4
SDR 9

S3,2
SDR 7,4

S2,5
SDR 6

S2
SDR 5

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

32

 

0,25

0,5

0,25

0,5

0,25

0,5

0,25

0,5

0,25

0,6

0,25

0,7

0,25

0,8

40

0,25

0,5

0,25

0,6

0,25

0,7

0,25

0,8

0,5

0,5

0,5

0,6

0,5

0,7

50

 

0,25

0,5

0,25

0,7

0,25

0,9

0,5

0,5

0,5

0,6

0,5

0,8

0,5

0,9

0,5

1,0

63

 

0,25

0,6

0,25

0,8

0,5

0,6

0,5

0,7

0,8

0,5

0,8

0,6

0,8

0,7

0,8

0,9

0,8

1,0

75

0,25

0,9

0,5

0,5

0,8

0,5

0,8

0,6

0,8

0,7

0,8

0,9

0,8

1,1

1,6

0,6

1,6

0,7

90

0,5

0,5

0,5

0,6

0,8

0,5

0,8

0,7

0,8

0,9

0,8

1,1

1,6

0,6

1,6

0,8

1,6

0,9

1,6

1,0

110

0,75

0,5

1

0,5

1,25

0,5

1,6

0,5

1,6

0,7

1,6

0,8

1,6

1,0

2,5

0,7

2,5

0,9

2,5

1,0

125

1

0,5

1,25

0,5

1,6

0,5

1,6

0,7

2,5

0,5

2,5

0,7

2,5

0,8

2,5

0,9

2,5

1,1

3,2

1,0

140

1,25

0,5

1,5

0,5

2

0,5

2,5

0,6

3,2

0,5

3,2

0,6

3,2

0,8

3,2

0,9

3,2

1,1

4

1,0

160

1,75

0,5

1,75

0,6

2,5

0,5

3,2

0,6

3,2

0,7

3,2

0,8

3,2

1,0

3,2

1,2

3,2

1,4

4

1,3

180

2

0,5

2,5

0,5

3,2

0,5

3,2

0,7

3,2

0,9

3,2

1,1

3,2

1,3

3,2

1,5

3,2

1,8

4

1,7

200

2

0,6

3,2

0,5

3,2

0,6

3,2

0,9

3,2

1,1

3,2

1,3

3,2

1,6

3,2

1,9

4

1,8

5

1,6

225

3,2

0,5

3,2

0,6

3,2

0,7

3,2

1,1

3,2

1,4

3,2

1,7

3,2

2,0

4

1,9

5

1,8

6,3

1,6

250

3,2

0,6

3,2

0,7

3,2

0,9

3,2

1,4

3,2

1,7

4

1,7

4

2,0

5

1,9

6,3

1,8

6,3

2,0

NOTE The proposed drop-height (m) and masses (kg) have been calculated to provide a specific impact energy of E/A=4 kJ/m2. Impact energy have been evaluated from E=mass x drop-height x 9,81 and pipe a cross section from A=Π x (DN2 – (DN – 2 x еn)2]/4.

Exceptionally DN 32 S5, S6,3, S8 pipes have a specific impact energy higher than 4 kJ/m² because a minimum drop-height of 0,5 m has been selected. For S8,3 pipes the same testing parameters of S8 shall be used.

Table E.19 — Impact resistance of PP-H pipes

Characteristics

Requirements

Test parameters

Test method

Impact resistance

(Charpy method)

For DN≤25 mm

TIR≤10 %

Test Temperature

Conditioning medium

Test piece type / nr.

23 °C

Liquid bath or air

Whole pipe / 1

ISO 9854-1a

ISO 9854-2a

Impact resistance

(Round-the clock method)

For DN≥32 mm

TIR≤10 %

Test Temperature

Conditioning medium

Type of striker (hemispherical)

 

 

23 °C

Liquid bath or air

25 mm diameter for striker mass ≤0,8 kg

Or

90 mm diameter for striker mass ≥1,6 kg

ISO 3127

 

 

Mass of striker and Fall height of striker

According table E.20

 

a ISO 9854 series foresees test on specimen not whole pipe, in case of dispute Charpy method shall be applied on specimen

Table E.20 — Test parameters for round the clock method on PP-H pipes at 23 °C with 7 kJ/m2<Tbl_--></Tbl_-->

 

DN [mm]

S20
SDR 41

S16
SDR 33

S12,5
SDR 26

S8
SDR 17

S6,3
SDR 13,6

S5
SDR 11

S4
SDR 9

S3,2
SDR 7,4

S2,5
SDR 6

S20
SDR 41

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

Mass [kg]

Height [m]

32

 

0,25

0,5

0,25

0,5

0,25

0,5

0,25

0,9

0,25

1,1

0,25

1,3

0,25

1,5

40

0,25

0,8

0,25

1,0

0,25

1,2

0,25

1,4

0,5

0,9

0,5

1,0

0,5

1,2

50

 

0,25

0,9

0,25

1,3

0,25

1,5

0,5

0,9

0,5

1,1

0,5

1,3

0,5

1,6

0,5

1,8

63

 

0,5

0,5

0,5

0,7

0,5

1,0

0,5

1,2

0,8

0,9

0,8

1,1

0,8

1,3

0,8

1,5

0,8

1,8

75

0,8

0,5

0,8

0,6

0,8

0,9

0,8

1,1

0,8

1,3

0,8

1,6

0,8

1,9

1,6

1,1

1,6

1,3

90

0,8

0,5

0,8

0,7

0,8

0,8

0,8

1,3

0,8

1,6

0,8

1,9

1,6

1,1

1,6

1,3

1,6

1,6

1,6

1,8

110

1,3

0,5

1,6

0,5

1,6

0,6

1,6

1,0

1,6

1,2

1,6

1,4

1,6

1,7

2,5

1,3

2,5

1,5

2,5

1,7

125

1,6

0,5

1,6

0,7

1,6

0,8

1,6

1,2

2,5

1,0

2,5

1,2

2,5

1,4

2,5

1,7

2,5

1,9

3,2

1,8

140

2,3

0,5

2,5

0,5

2,5

0,7

2,5

1,0

3,2

0,9

3,2

1,1

3,2

1,4

3,2

1,6

3,2

1,9

4

1,8

160

3

0,5

3,2

0,5

3,2

0,7

3,2

1,0

3,2

1,2

3,2

1,5

3,2

1,8

3,2

2,1

3,2

2,5

4

2,3

180

3,2

0,5

3,2

0,7

3,2

0,8

3,2

1,3

3,2

1,6

3,2

1,9

3,2

2,3

3,2

2,7

3,2

3,1

4

2,9

200

3,2

0,7

3,2

0,8

3,2

1,0

3,2

1,6

3,2

1,9

3,2

2,3

3,2

2,8

3,2

3,3

4

3,1

5

2,9

225

3,2

0,8

3,2

1,1

3,2

1,3

3,2

2,0

3,2

2,4

3,2

2,9

3,2

3,5

4

3,4

5

3,1

6,3

2,9

250

3,2

1,1

3,2

1,3

3,2

1,6

3,2

2,4

3,2

3,0

4

2,9

4

3,5

5

3,3

6,3

3,1

6,3

3,6

NOTE The proposed drop-height (m) and masses (kg) have been calculated to provide a specific impact energy of E/A=7 kJ/m2. Impact energy have been evaluated from E=mass x drop-height x 9,81 and pipe a cross section from A=π x (DN2 – (DN – 2 x еn)2]/4.

For S8,3 pipes the same testing parameters of S8 shall be used.

      1. Mechanical characteristics of valves

The valves shall conform to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type.

Valves made of PP-RCT are excluded from the requirements of this clause.

    1. Physical characteristics
      1. Physical characteristics of pipes

When tested in accordance with the test methods as specified in Table E.21 using the indicated parameters, the pipe shall have physical characteristics conforming to the requirements given in Table E.21.

Table E.21 — Physical characteristics of pipes

Characteristic

Requirements

Test parameters

Test method

Melt mass-flow rate (MFR)

When processing the material into a pipe, the MFR-value specified by the raw compound manufacturer may deviate at maximum ±30 % compared with the raw material

Test temperature

Loading mass

ora

230 °C

2,16 kg

ISO 1133‑1

Test temperature

Loading mass

190C

5 kg

Longitudinal
reversiona

≤2 %

Temperature

PP-H

PP-B

PP-R

PP-RCT

Immersion time:

e ≤ 8 mm

8 mm < e ≤ 16 mm

 

150 °C

150 °C

135 °C

135 °C

 

1 h

2 h

ISO 2505

Method B: Air oven

Length of test pieces

200 mm

a Alternative test method. In case of dispute, the test method agreed in the customer product specification with the raw compound manufacturer shall be used.

      1. Physical characteristics of fittings

When tested in accordance with the test method as specified in Table E.22 using the indicated parameters, the fitting shall have physical characteristics conforming to the requirements given in Table E.22.

Table E.22— Physical characteristics of fittings

Characteristic

Requirements

Test parameters

Test method

Melt mass-flow rate (MFR)

Change of MFR by
processing ±30 %

Test temperature
Loading mass
ora

230 °C
2,16 kg

ISO 1133‑1

Test temperature
Loading mass

190 °C
5 kg

a Alternative test method. In case of dispute, the test method agreed in the customer product specification with the raw compound manufacturershall be used.

      1. Physical characteristics of valves

In addition to the requirements of ISO 16135, ISO 16136, ISO 16137, ISO 16138, ISO 16139, or ISO 21787, as applicable, depending on the valve type, the physical characteristics of valves shall conform to E.5.2.

    1. Fitness for purpose of the system

Fitness for purpose of the system shall be deemed to apply when test pieces assembled in accordance with 12.2 and tested using the test methods and indicated parameters as specified in Table E.24 conforming to the requirements given in Table E.23.

Table E.23 — General requirements for fitness for purpose of the system

Characteristic

Requirements

Test parameters

Test methoda

Hydrostatic strength at 20 °C

for fusion and mechanical jointsc

No failure during the test period

End caps

Type A according to
ISO 1167‑1

ISO 1167‑2

ISO 1167‑4

Orientation

Free

Test temperature

20 °C

Type of test

Water-in-water or
water-in-airb

Hydrostatic (hoop) stress:
PP-H
PP-B
PP-R
PP-RCT

1,2 PNd

Conditioning period

See ISO 1167‑1

Test period

≥1 000 h

a Assemblies of pipes and fittings shall be prepared in accordance with ISO 1167‑4 and tested in accordance with ISO 1167‑1.

b In case of dispute, water-in-water shall be used.

c In future, the development of ISO 17885 might revise the test requirements for mechanical joints.

d PN of the system.


  1. (informative)

    Design and installation
    1. Design of a thermoplastics piping system for industrial applications

For the design of an assembled piping system (e.g. determination of the maximum allowable pressure, ps), the following parameters should be taken into account and, where applicable, further service factors shall be considered by the pipeline designer:

— temperature, T, usually constant, if changing, then ISO 13760[19] Miner's Rule should be used;

— pressure, p, usually constant, if changing, then ISO 13760[19] Miner's Rule should be used;

— lifetime, t, usually 25 years;

— stress, σ, calculated with the formulae given in Annex A to Annex E, as applicable;

— resistance to rapid crack propagation for pipe for transport of air or a compressible gas,
(In this case, the required design coefficient C, instead of being as specified in ISO 12162, can be increased to a higher value. For example, when designing an air compression system made of PE, the design coefficient C should be changed from 1,25 to 2. See Table B.3 footnote c)

— chemical resistance of the material against the fluid;

— required design coefficient, C (minimum values of C are given in ISO 12162);

— influence of wear and abrasion by solid matters in fluids;

— influence of changing of length (caused by temperature, swelling, internal pressure);

— kind of installation (fixed, floating, etc.) and joining method

— supporting distances in the installed piping system.

With these parameters, together with the minimum required hydrostatic strength curves, the design of a piping system can be carried out taking into account the national and/or local requirements, where appropriate, complemented by experimental design methods.

NOTE Due to the fact that there are several calculation methods available for the design of thermoplastics piping systems for industrial applications, only some general parameters can be given. Guidance can be found in national codes of practice for industrial systems.

    1. Installation of piping systems

For the installation of components conforming to this International Standard, national and/or local requirements, and relevant codes of practice apply.

In addition, the component manufacturer may give a recommended practice for installation which refers to transport, storage, and handling of the components, as well to the installation in accordance with the applicable national and/or local instructions. For external above ground applications, additional requirements concerning the climate should be agreed upon between manufacturer and purchaser.

Annex ZA
(informative)

Relationship between this European Standard and the essential requirements of Directive 2014/68/EU for pressure equipment aimed to be covered

This European Standard has been prepared under a Commission’s standardization request “M/601” to provide one voluntary means of conforming to essential requirements of Directive 2014/68/of the European Parliament and of the Council of 15 May 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of pressure equipment.

Once this standard is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of this standard given in Table ZA.1 and application of the edition of the normatively referenced standards as given in Table ZB.1 confers, within the limits of the scope of this standard, a presumption of conformity with the corresponding essential requirements of that Directive, and associated EFTA regulations.

Table ZA.1 — Correspondence between this European Standard and Annex I of the Directive 2014/68/EU

Essential Requirements of Directive 2014/68/EU

Clause(s)/sub-clause(s) of this EN

Remarks/Notes

2.2.1

A.1, B.1, C.1, D.1, E.1

Design for adequate strength

2.6

10.1

Corrosion protecting

3.1.2

12

Permanent joining

3.2.2 and 7.4

8.2.1, 8.2.2, 8.2.3, A.4.1, A.4.2, A.6, B.4.1, B.4.2, B.6, C.4.1, C.4.2, C.6, D.4.1, D.4.2, D.6, E.4.1, E.4.2, E.6

Proof testing

3.3

16

Marking

4.1.a), 4.1.c)

5.2, A.1, B.1, C.1, D.1, E.1

Material properties

Table ZA.2 — Normative references from clause 2 of this document and their corresponding European publications

Column 1

Reference in Clause 2

Column 2

International Standard Edition

Column 3

Title

Column 4

Corresponding European Standard Edition

ISO 7-1

ISO 7-1:1994

ISO 7-1:1994/Cor 1:2007

Pipe threads where pressure-tight joints are made on the threads — Part 1: Dimensions, tolerances and designation

EN 10226-1:2004

ISO 179-1

ISO 179-1:2023

Plastics — Determination of Charpy impact properties

EN ISO 179-1:2023

ISO 228-1

ISO 228-1:2000

Pipe threads where pressure-tight joints are not made on the threads — Part 1: Dimensions, tolerances and designation

EN ISO 228-1:2003

ISO 1133-1

ISO 1133-1:2022

Plastics — Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics — Part 1: Standard method

EN ISO 1133-1:2022

ISO 1167-1:2006

ISO 1167-1:2006

Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method

EN ISO 1167-1:2006

ISO 1167-2:2006

ISO 1167-2:2006

Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 2: Preparation of pipe test pieces

EN ISO 1167-2:2006

ISO 1167-3:2007

ISO 1167-3:2007

Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 3: Preparation of components

EN ISO 1167-3:2007

ISO 1167-4:2007

ISO 1167-4:2007

Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 4: Preparation of assemblies

EN ISO 1167-4:2007

ISO 1183-1

ISO 1183-1:2019

Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pycnometer method and titration method

EN ISO 1183-1:2019

ISO 1183-2

ISO 1183-2:2019

Plastics — Methods for determining the density of non-cellular plastics — Part 2: Density gradient column method

EN ISO 1183-2:2019

ISO 17885

ISO 17885:2021

Plastics piping systems — Mechanical fittings for pressure piping systems — Specifications

None

For applicable standard edition see Column 2

ISO 2505

ISO 2505:2023

Thermoplastics pipes — Longitudinal reversion — Test method and parameters

EN ISO 2505:2023

ISO 3126

ISO 3126:2005

Plastics piping systems — Plastics components — Determination of dimensions

EN ISO 3126:2005

ISO 3127

ISO 3127:1994

Thermoplastics pipes — Determination of resistance to external blows — Round-the-clock method

EN ISO 3127:2017

ISO 3501

ISO 3501:2021

Plastics piping systems — Mechanical joints between fittings and pressure pipes — Test method for resistance to pull-out under constant longitudinal force

EN ISO 3501:2015

ISO 4065

ISO 4065:2018

Thermoplastics pipes — Universal wall thickness table

None

For applicable standard edition see Column 2

ISO 4427-1:2007

ISO 4427-1:2007

Plastics piping systems for water supply and for drainage and sewerage under pressure — Polyethylene (PE) — Part 1: General

None

For applicable standard edition see Column 2

ISO 6964

ISO 6964:2019

Polyolefin pipes and fittings — Determination of carbon black content by calcination and pyrolysis — Test method

None

For applicable standard edition see Column 2

ISO/TR 7620

ISO/TR 7620:2005

Rubber materials — Chemical resistance

None

For applicable standard edition see Column 2

ISO 9080:2012

ISO 9080:2012

Plastics piping and ducting systems — Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation

EN ISO 9080:2012

ISO 9854-1

ISO 9854-1:2023

Thermoplastics pipes for the transport of fluids — Determination of Charpy impact properties — Part 1: General test method

None

For applicable standard edition see Column 2

ISO 9854-2

ISO 9854-2:2023

Thermoplastics pipes for the transport of fluids — Determination of Charpy impact properties — Part 2: Test conditions for pipes of various materials

None

For applicable standard edition see Column 2

ISO 10147

ISO 10147:2011

Pipes and fittings made of crosslinked polyethylene (PE-X) — Estimation of the degree of crosslinking by determination of the gel content

EN ISO 10147:2012

ISO 11414

ISO 11414:2009

Plastics pipes and fittings — Preparation of polyethylene (PE) pipe/pipe or pipe/fitting test piece assemblies by butt fusion

None

For applicable standard edition see Column 2

ISO 11922-1:2018

ISO 11922-1:2018

Thermoplastics pipes for the conveyance of fluids — Dimensions and tolerances — Part 1: Metric series

None

For applicable standard edition see Column 2

ISO 11357-6

ISO 11357-6:2018

Plastics — Differential scanning calorimetry (DSC) — Part 6: Determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (dynamic OIT)

EN ISO 11357-6:2018

ISO 12162

ISO 12162:2009

Thermoplastics materials for pipes and fittings for pressure applications — Classification, designation and design coefficient

EN ISO 12162:2009

ISO 13477

ISO 13477:2008

Thermoplastics pipes for the conveyance of fluids — Determination of resistance to rapid crack propagation (RCP) — Small-scale steady-state test (S4 test)

EN ISO 13477:2008

ISO 13479:2022

ISO 13479:2022

Polyolefin pipes for the conveyance of fluids — Determination of resistance to crack propagation — Test method for slow crack growth on notched pipes

EN ISO 13479:2022

ISO 13953

ISO 13953:2001

ISO 13953:2001/Amd 1:2020

Polyethylene (PE) pipes and fittings — Determination of the tensile strength and failure mode of test pieces from a butt-fused joint

None

For applicable standard edition see Column 2

ISO 14531-1

ISO 14531-1:2002

Plastics pipes and fittings — Crosslinked polyethylene (PE-X) pipe systems for the conveyance of gaseous fuels — Metric series — Specifications — Part 1: Pipes

None

For applicable standard edition see Column 2

ISO 15512

ISO 15512:2019

Plastics — Determination of water content

EN ISO 15512:2019

ISO 16135

ISO 16135:2006

ISO l6135:2006/Amd 1:2019

Industrial valves — Ball valves of thermoplastics materials

EN ISO 16135:2006

EN ISO 16135:2006/A1:2019

ISO 16136

ISO 16136:2006

ISO 16136:2006/Amd 1:2019

Industrial valves — Butterfly valves of thermoplastics materials

EN ISO 16136:2006

EN ISO 16136/A1:2019

ISO 16137

ISO 16137:2006

ISO 16137:2006/Amd 1:2019

Industrial valves — Check valves of thermoplastics materials

EN ISO 16137:2006

EN ISO 16137:2006/A1:2019

ISO 16138

ISO 16138:2006

ISO 16138:2006/Amd 1:2019

Industrial valves — Diaphragm valves of thermoplastics materials

EN ISO 16138:2006

EN ISO 16138:2006/A1:2019

ISO 16139

ISO 16139:2006

ISO 16139:2006/Amd 1:2019

Industrial valves — Gate valves of thermoplastics materials

EN ISO 16139:2006

EN ISO 16139:2006/A1:2019

ISO 16770

ISO 16770:2019

Plastics — Determination of environmental stress cracking (ESC) of polyethylene — Full-notch creep test (FNCT)

None

For applicable standard edition see Column 2

ISO 16871

ISO 16871:2003

Plastics piping and ducting systems — Plastics pipes and fittings — Method for exposure to direct (natural) weathering

EN ISO 16871:2003

ISO 18488

ISO 18488:2015

Polyethylene (PE) materials for piping systems — Determination of Strain Hardening Modulus in relation to slow crack growth — Test method

None

For applicable standard edition see Column 2

ISO 18489:2015

ISO 18489:2015

Polyethylene (PE) materials for piping systems — Determination of resistance to slow crack growth under cyclic loading — Cracked Round Bar test method

None

For applicable standard edition see Column 2

ISO 18553

ISO 18553:2002

ISO 18553:2002/Amd 1:2007

Method for the assessment of the degree of pigment or carbon black dispersion in polyolefin pipes, fittings and compounds

None

For applicable standard edition see Column 2

ISO 21787

ISO 21787:2006

ISO 21787:2006/Amd 1:2019

Industrial valves — Globe valves of thermoplastics materials

EN ISO 21787:2006

EN ISO 21787:2006/A1:2019

EN 12099

EN 12099:1997

Plastics piping systems — Polyethylene piping materials and components — Determination of volatile content

EN 12099:1997

The documents listed in the Column 1 of table [ZA.2], in whole or in part, are normatively referenced in this document, i.e. are indispensable for its application. The achievement of the presumption of conformity is subject to the application of the edition of Standards as listed in Column 4 or, if no European Standard Edition exists, the International Standard Edition given in Column 2 of table [ZA.2].

WARNING 1 — Presumption of conformity stays valid only as long as a reference to this European Standard is maintained in the list published in the Official Journal of the European Union. Users of this standard should consult frequently the latest list published in the Official Journal of the European Union.

WARNING 2 — Other Union legislation may be applicable to the product(s) falling within the scope of this standard.

Bibliography

[1] ISO 3, Preferred numbers — Series of preferred numbers

[2] ISO 497, Guide to the choice of series of preferred numbers and of series containing more rounded values of preferred numbers

[3] Directive 2014/68/EU of the European Parliament and of the Council of 15 May 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of pressure equipment - OJ L 189, 27.6.2014, p. 164–259

[4] ISO 4437‑2, Plastics piping systems for the supply of gaseous fuels — Polyethylene (PE) — Part 2: Pipes

[5] ISO 265‑1, Pipes and fittings of plastics materials — Fittings for domestic and industrial waste pipes — Basic dimensions: Metric series — Part 1: Unplasticized poly(vinyl chloride) (PVC-U)

[6] ISO/TR 10358:1993, Plastics pipes and fittings — Combined chemical-resistance classification table

[7] ISO 4433‑1, Thermoplastics pipes — Resistance to liquid chemicals — Classification — Part 1: Immersion test method

[8] ISO 4433‑2, Thermoplastics pipes — Resistance to liquid chemicals — Classification — Part 2: Polyolefin pipes

[9] ISO IEC 17050‑1, Conformity assessment - Supplier’s declaration of conformity - Part 1: General requirements

[10] ISO IEC 17050‑2, Conformity assessment - Supplier’s declaration of conformity - Part 2: Supporting documentation

[11] CEN/TR 15438:2007, Plastics piping systems — Guidance for coding of products and their intended uses

[12] ISO 12230, Polybutene-1 (PB-1) pipes — Effect of time and temperature on the expected strength

[13] CEN/TS 12201‑7, Plastics piping systems for water supply, and for drainage and sewerage under pressure - Polyethylene (PE) - Part 7: Guidance for the assessment of conformity

[14] ISO 760, Determination of water — Karl Fischer method (General method)

[15] Accelerated pipe test methods to evaluate PE 100-RC materials – Possibilities for ISO standardisation, Kratochvilla T, Eremiasch R, Bruchner C, TGM Austria, Proceedings of the 19th Plastic Pipes Conference PPXIX, September 2018

[16] EN 1092‑1:2018, Flanges and their joints - Circular flanges for pipes, valves, fittings and accessories, PN designated - Part 1: Steel flanges

[17] ISO 24033, Polyethylene of raised temperature resistance (PE-RT) pipes — Effect of time and temperature on the expected strength

[18] ISO 10146, Crosslinked polyethylene (PE-X) and crosslinked medium density polyethylene (PE-MDX) — Effect of time and temperature on expected strength

[19] ISO 13760, Plastics pipes for the conveyance of fluids under pressure — Miner's rule — Calculation method for cumulative damage

espa-banner